PENGARUH MICROBURST DAN LOW-LEVEL WIND SHEAR (LLWS) PADA KASUS KECELAKAAN PENDARATAN PESAWAT LION AIR TANGGAL 13 APRIL 2013 DI BALI

Achmad Sasmito, Donaldi S. Permana, Alfan S. Praja, Urip Haryoko

Abstract


Pada tanggal 13 April  2013 pukul 14.00-15.00 WIB telah terjadi musibah jatuhnya pesawat Lion Air Boeing 737-800 di laut Bali sebelum mencapai ujung landas pacu 09 di bandara Ngurah Rai, Bali. Informasi meteorologi yang yang lengkap sangat diperlukan untuk membantu mengungkap penyebab terjadinya peristiwa tersebut. Kajian dilakukan dengan menggunakan data satelit, data radar, model global JMA, data AWOS dan Flight Data Recorder (FDR). Berdasarkan analisis data satelit MTSAT menunjukkan bahwa di sekitar bandara terdapat pertumbuhan awan Cumulus yang berkembang menjadi awan Cumulonimbus (Cb) dengan suhu puncak awan -42o C, hasil analisis data radar cuaca menunjukkan bahwa di sebelah barat landasan sekitar 5 km dari ujung landasan yang biasa digunakan untuk touch down pesawat ditengarai terdapat awan Cumulus dan Cb dengan tinggi dasar awan sekitar 500 meter.  Selain itu, hasil analisis data NWP model global dan AWOS menunjukkan adanya LLWS yakni angin permukaan dominan dari timur sedangkan angin lapisan atasnya (lapisan1000 mb) dominan angin dari timur-laut dengan kecepatan antara 10-15 knot. Dengan mempertimbangkan seluruh data meteorologi yang tersedia, jalur penerbangan, dan kerusakan pesawat diduga kuat bahwa saat akan mendarat pesawat Lion Air berada dibawah awan Cb, dan mengalami microburst sebelum sempat mendarat.  

 

On April 13, 2013 at 14.00-15.00 WIB (07.00 – 08.00 UTC) the Lion Air Boeing 737-800 aircraft crashed in the Bali sea before reaching the end of runway 09 in Ngurah Rai airport, Bali. This study aims to analyze the potential occurrence of microburst and LLWS as the causes of this accident based on satellite, weather radar, JMA global models, AWOS and aircraft FDR data. Satellite data showed that cumulus clouds developed into Cb clouds with peak temperatures of -52.5 oC around the airport. Radar data showed that in the west of the runway around 2 - 3 km there were suspected cumulus and Cb clouds with a cloud base height of about 500 meters. Besides, model data and AWOS showed the existence of LLWS indicated by the easterly surface wind and the northeasterly upper layer winds (925 mb) with speeds between 10-15 knots. This was supported by aircraft FDR data which showed a very strong downburst which caused the aircraft to drop drastically with an average of 375 meters/minute from 6000 feet at 07.00 UTC to 1000 feet at 07.04 UTC before finally crashed at 07.10 UTC. This indicates the potential for a microburst that results in an aircraft accident.


Keywords


Microburst; LLWS; awan Cumulus; awan Cb; radar

References


Airbus: A statistical Analysis of Commrecial Aviation Accidents 1958-2017, accessed 12 April 2019 at https://www.skybrary.aero/bookshelf/books/4342.pdf

Li, G., Baker, S. P., Grabowski, J. G., & Rebok, G. W. (2001). Factors associated with pilot error in aviation crashes. Aviation, space, and environmental medicine, 72(1), 52-58.

WMO. (2007). Aviation Hazards, Education and Training Programme, ETR-20. WMO/TD-No. 1390, Secretariat of the World Meteorological Organization, Geneva, Switzerland, 1-2.

Henk, K. (2014).Criteria for crosswind variations during approach and touchdown at airports us. Joint Symposium of DFG FOR 1066 and DLR-Airbus C 2A2S2E “Simulation of Wing and Nacelle Stall” Braunschweig, Germany.

Xu, T. (2019). Characteristics of low-level wind shear in Qinghai Xining Airport. IOP Conference Series: Materials Science and Engineering, Vol. 688, No. 2, p. 022030.

Spencer, R. dan Tynan, M. (2015). Windshear, Microbursts, Thunderstorms And Lightning Strikes: phenomen A Identification And Impacts In Flight, Report.

WMO. (2007). Guide to the Global Observing System. Report WMO-No.488, World Meteorological Organization.

Wilson, J. W., R. D. Roberts, C. Kessinger, dan J. McCarthy (1984) Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898–915.

http://geography.name/thunderstorms-2. diakses 10 November 2017

Straka, J.M. dan J.R. Anderson. (1993). Numerical Simulations of Microburst-producing Storms: Some Results from Storms Observed during COHMEX. J. Atmos. Sci., 50, 1329–1348, https://doi.org/10.1175/1520-0469

Tuttle, J.D., V.N. Bringi, H.D. Orville, and F.J. Kopp, 1989: Multiparameter Radar Study of a Microburst: Comparison with Model Results. J. Atmos. Sci., 46, 601–620, https://doi.org/10.1175/1520-0469

Almethen, Osama M. dan Aldaithan, Zayed S. (2017). The State of Atmosphere Stability and Instability Effects on Air Quality. The International Journal of Engineering and Science (IJES), Volume 6, issue 4, 74-79.

Barry, R.G. dan Chorley, R.J. (2003). Atmosphere, weather and climate, 8th edition (1st edition 1968). Routledge, London, p 25

Vicente, G. A., Scofield, R. A., dan Menzel, W. P. (1998). The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883- 1898.

Suseno, D. P. Y., dan Yamada, T. J. (2012). Two-dimensional, threshold-based cloud type classification using MTSAT data. Remote sensing letters, 3(8), 737-746.

Woodley, W.L. dan Rosenfeld, D. (2004). The Development and Testing of a New Method to Evaluate the Operational Cloud-Seeding Programs in Texas. J. Appl. Meteorol. 43, 249–263.

Horonjeff, R., McKelvey, F. X., Sproule,W. J., dan Young, S. B. (2010). Planning and Design of Airports, The McGraw-Hill Companies, Inc.

Zhang,Y., Sarkar,P., dan Hu,H. (2014). An experimental study on wind loads acting on a high-rise building model induced by microburst-like winds. Journal of Fluids and Structures, 50, 547-564.

Komite Nasional Keselamatan Transportasi. (2014). Laporan Final 13.04.09.04. PT. Lion Mentari Airlines (Lion Air) Boeing 737 -800; PK-LKS Ngurah Rai International Airport, Bali Republic of Indonesia 13 April 2013




DOI: http://dx.doi.org/10.31172/jmg.v21i1.549

Refbacks

  • There are currently no refbacks.


PUBLISHED BY:

Pusat Penelitian dan Pengembangan

Badan Meteorologi, Klimatologi dan Geofisika (BMKG)

» http://puslitbang.bmkg.go.id/jmg


Jurnal Meteorologi dan Geofisika

e-ISSN : 2527-5372

p-ISSN : 1411-3082

 

Address : 

Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat 10720

» Phone : (+6221) 4246321 ext 1900

» Fax :(+6221) 65866238

Email Coordinatorthomas.hardy@bmkg.go.id


Plagiarism Tools

     

  Creative Commons License

Jurnal Meteorologi dan Geofisika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

INDEXING

 

JMG Indexed by: