Saminu Olatunji, Ahmed Muyiwa Emiola, Adewale Warith Adebisi


The study aimed  to determine the exposure levels of the subsurface aquiferous layers, owing to the alarming rate of contamination of the groundwater within 8.150 0N - 8.156 0N and 4.244 0E - 4.248 0E. Thus, aquifers' overlying layers, resistivity, and thickness anomalies were determined to generate an aquifer vulnerability map. A multi-criteria decision method of estimated Groundwater confinement, Overlying strata, Depth to Aquifer, and Topography index approach was implemented. Schlumberger's Vertical Electrical Sounding technique was implemented to acquire 30 Vertical Electrical Sounding points under a maximum half-current electrode separation (AB/2) of 65 m. IP2Win geophysical software packages were used to analyze the varying layer resistivity, depth, thickness, and also the sounding curves of the study area. The 2D model revealed a maximum of four geo-electric layers. The layers' resistivity and thickness ranges are clayey silt topsoil (52.5-1104 Ωm; 0.5-9.59 m), weathered layer (10.3-804 Ωm; 0.6-12.1 m), fractured basement (5.5-50832 Ωm; 6.7-18.1 m) and fresh basement (8.3-27348 Ωm; infinity m). On the Groundwater Overlying Strata Depth to Aquifer and Topography model scale, the area is generally characterized by the moderate vulnerability. Implying here is that aquifers have a moderate protective capacity in which the overlying strata above the aquifer are mostly impermeable layers (clay and silt) of high thickness and low porosity.


Aquifer; Resistivity; Vulnerability; AHP-GODT model

Full Text:



M. A. Hoque, A. A. Khan, M. Shamsudduha, M. S. Hossain, T. Islam, and S. H. Chowdhury, “Near Surface Lithology and Spatial Variation of Arsenic in the Shallow Groundwater, Southeastern Banglandesh,” In Environmental Geology. 56: 1687-1695, 2009.

E. Madene, H. Meddi, A. Boufekane and M. Meddi, “Contribution of Hydrogeochemical and Isotopic Tools to the Management of Upper and Middle Cheliff Aquifers”, In Journal of Earth Science, Vol. 31, No. 5, p. 993–1006., 2020.

S. Chand, M. Ashif, M. Y. Zargar, and B. M. Ayub, “Nitrate Pollution: A menace to Human, Soil, Water and Plant” Universal Journal of Environmental Research and Technology. 1(1): 22-32, 2011.

M. J. Afonso, A. Pires, H. I. Chamine, J. M. Marques, L. Guimares, L. Guilhermino, and F. T. Rocha, “Aquifer Vulnerability Assessment of Urban Areas Using A GIS-Based Cartography: Paranhos Groundwater Pilot Site, Porto, NW, Portugal,” 33rd Int. Geological Symposium: Hydrogeology, Oslo (Norway), 2008

T. A. Adagunodo, and L. A. Sunmonu, “Geoelectric Assessment of Groundwater Prospect and Vulnerability of Overburden Aquifers at Adumasun Area, Oniye, Southwestern Nigeria,” In Arch. Appl. Sci. Res. 4(5):2077-209, 2012.

M. S. Ghebouli, M. Bencheikh Elhocine, “Origine de la Salinité des Eaux Souterraines cas de Hautes Plaines Setifiennes (Nord-Est Algérien),” In Sciences & Technologie, 28: 37–46, 2008.

A. Baghvand, T. Nasrabadi, G. Nabibidhendi, A. Vosoogh, A. Karbassi, and N. Mehradadi “Groundwater Quality Degradation of an Aquifer in Iran central desert,” Desalination 260(3):264-275, 2010.

L. A. Sunmonu, T. A. Adagunodo, E. R. Olafisoye, and O. P. Oladejo, “The Groundwater Potential Evaluation at Industrial Estate Ogbomoso, Southwestern Nigeria,” RMZ Mater. Geoenviron. 59:363–390. 2012.

B. Oroji, “Groundwater vulnerability assessment using GIS-based DRASTIC and GOD in the Asadabad Plain,” In J. Mater. Environ. Sci. 9(6): 1809-1816, 2018.

L. Aller, T. Bennet, J. H. Lehr, R. J. Petty, and G. Hackhett, “DRASTIC: A Standard System for Evaluating Groundwater Potential Using Hydrogeologic Settings,” EPA/600/2-85/018US Environ. Protec. Agency, Ada Oklahoma Report 622 p455. 1987.

S. S. D. Foster, “Fundamental Concepts in Aquifer Vulnerability Pollution Risk and Protection Strategy,” In Vulnerability of Soil and Groundwater to Pollution: Proceedings and Information. TNO Committee on Hydrological Research. 38: 69-86. 1987.

D. Van Stempvoort, L. Ewert, and L. Wassenaar, “Aquifer Vulnerability Index (AVI): A GIS Compatible Methodfor Groundwater Vulnerability Mapping,” In Can Water Res J 18:25–37. 1993. 1993.

M. Civita, “Le Carte della Vulnerabilita degli acquiferi all inquinamento: Teoria and pratica,” PitagoraEditrice, Bologna. 1994.

N. Doerfliger, P. Y. Jeannin , and F. Zwahlen, “Water Vulnerability assessment in Karst Environments: A New Method of Defining Protection Areas Using a Multi-Attribute Approach and GIS tools (EPIK Method),” In Environment Geology 39: 165-175, 1999.

D. Daly, A. Dassargues, D. Drew, S. Dunne, N. Goldscheider, S. Neales, C. H. Popescu, and F. Zwahlen, “Main Concepts of the European Approach for Karst Groundwater Vulnerability and Assessment and Mapping,” In Hydrogeol Journal.10:340 – 345, 2002.

S. Khemiri, A. Khnissi, B. A. Alaya, S. Saidi, and F. Zargrouni, “Using GIS for theComparison of Intrinsic Parameter Methods Assessment of Groundwater Vulnerability to Pollution in Scenarios of Semi-Arid Climate. The case of Foussana Groundwater in the Central of Tunisia,” In J. Water Resource Prot., 835–845, 2013.

I. A. Adeyemo, T. S. Olowolafe, and A. O. Fola-Abe, “Aquifer Vulnerability Assessment at Ipinsa-Okeodu Area, Near Akure, Southwestern Nigeria, Using GODT,” In Journal of Environmental and Earth Science 6(6): 9-18, 2016.

N. G. Obaje, “Geology and Mineral Resources of Nigeria,” Published by Springer London 14-60. 2009.

N. B. Salawu, S. Olatunji, M. M. Orosun, and T. Y. Abdulraheem, “Geophysical Inversion of Geologic Structures of Oyo Metropolis, Southwestern Nigeria from Airborne Magnetic Data. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 5(2): 143-157, 2018.

B. R. Onawola, S. Olatunji, O. Ologe, and R. O. Jimoh, “Determination of Aquifer Parameters from Resistivity Data: A Case of University of Ilorin Campus, Northcentral Nigeria,” In Tanzania Journal of Science 47(1), 2021.

A. T. Tizro, K. Voudouris, and Y. Basami, “Estimation of Porosity and Specific Yield by Application of Geoelectrical Method – A Case Study in Western Iran,” In J. Hydrol. 454–455:160–172.

doi: 10.1016/j.jhydrol.2012.06.009, 2012.

O. Anomohanran, M. O. Ofomola, and F. O. Okocha, “Investigation of Groundwater in Parts of Ndokwa District in Nigeria Using Geophysical Logging and Electrical Resistivity Methods: Implications for Groundwater Exploration,” In m. J. Afr. Earth Sc. 129:108–116, 2017.

T. A. Adagunodo, M. K. Akinloye, L. A. Sunmonu, A. P. Aizebeokhai, K. D. Oyeyemi, and F. O. Abodunrin, “Groundwater Exploration in Aaba Residential Area of Akure, Nigeria,” In Front Earth Sci. 6:66, 2018.

A. A. Adeniji, “Integrated Geophysical Techniques for Investigating Subsurface Structural Analysis Around Ogbagba, Southwestern Nigeria,” M. Tech. Thesis, Ladoke Akintola University of Technology, Ogbomoso,” 2014.

K. A. Mogaji, and O. B. Omobude Modeling ofgeoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain,Ipinsa Southwest, Nigeria – A GIS-based GODT approach,” In NRIAG Journal of Astronomy and Geophysics, 6:2, 434-451, DOI: 10.1016/j.nrjag.2017.07.001, 2017.

G. O. Omosuyi, and A. Oseghale, “Groundwater Vulnerability Assessment in Shallow Aquifers using Geoelectric and Hydrogeologic Parameters at Odigbo, Southwestern Nigeria,” In Am. J. Sci. Ind. Res., 3(6):501-512, 2012.



  • There are currently no refbacks.


Pusat Penelitian dan Pengembangan

Badan Meteorologi, Klimatologi dan Geofisika (BMKG)


Jurnal Meteorologi dan Geofisika

e-ISSN : 2527-5372

p-ISSN : 1411-3082


Address : 

Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat 10720

» Phone : (+6221) 4246321 ext 1900

» Fax :(+6221) 65866238

Email Coordinator:

Plagiarism Tools


  Creative Commons License

Jurnal Meteorologi dan Geofisika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



JMG Indexed by: