GAS RUMAH KACA DAN PERUBAHAN IKLIM DI INDONESIA
GAS RUMAH KACA
DAN PERUBAHAN IKLIM
DI INDONESIA

Dodo Gunawan
Kadarsah

PENERBIT PUSLITBANG
BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA
KATA PENGANTAR

Penerbitan buku ini dilakukan setelah melalui review yang bertujuan untuk penyempurnaan kesalahan penggunaan istilah maupun substansinya. Review dari buku dilakukan oleh reviewer yang kompeten dan dipilih oleh Penerbit sesuai dengan bidang kepakarannya, yaitu Dr. Edvin Aldrian, M.Sc.

Besar harapan kami, buku ini dapat digunakan menjadi acuan baik untuk pembelajaran maupun penelitian, sehingga dapat mempunyai andil dalam pengembangan ilmu pengetahuan, utamanya di bidang meteorologi dan klimatologi.

Kepada Reviewer dan Penulis kami mengucapkan terima kasih, mudah-mudahan usaha kita dalam menyediakan buku-buku referensi bidang meteorologi dan klimatologi ini dapat bermanfaat bagi berbagai kalangan.

Tentu saja buku ini masih memerlukan penyempurnaan, sehingga kritik dan saran yang positif sangat ditunggu.

Jakarta, November 2013
Kepala Pusat Penelitian dan Pengembangan
Badan Meteorologi, Klimatologi, dan Geofisika

Dr. Masturyono, M.Sc
PRAKATA

Puji dan syukur kami panjatkan ke hadirat Allah SWT atas segala limpahan rahmat dan hidayah-Nya, sehingga pembuatan buku literatur yang berjudul "Gas Rumah Kaca dan Perubahan Iklim di Indonesia" dapat diselesaikan dengan baik.

Tujuan pembuatan buku literatur ini adalah menambah referensi khususnya pada kegiatan penelitian dibidang meteorologi, klimatologi, kualitas udara dan geofisika. Untuk pembaca pada umumnya, buku ini dapat dijadikan referensi dalam memahami perubahan iklim.

Buku literatur ini memberikan gambaran mengenai metodologi dan hasil analisis terhadap Gas Rumah Kaca (GRK) yang didasarkan simulasi iklim di Indonesia menggunakan RegCM4 dan observasi yang dilakukan oleh Tim Puslitbang BMKG dan lembaga riset lainnya.

Semoga buku literatur ini bermanfaat bagi peneliti dan lembaga penelitian khususnya Badan Meteorologi Klimatologi dan Geofisika serta pihak terkait lainnya.

Jakarta, 22 Oktober 2012

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>PRAKATA</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>BAB I. PENDAHULUAN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.1. Sistem Iklim</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.2. Interaksi Iklim</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.3. Benua Maritim Indonesia</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.4. Gas Rumah Kaca</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1.5. Pemanasan Global</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1.6. Siklus Karbon</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>BAB II. GAS RUMAH KACA</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.1. Deskripsi Gas Rumah Kaca</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.2. Pencemaran Udara</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2.3. Sumber Pencemar Udara</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>BAB III. PERUBAHAN IKLIM</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>3.1. Sejarah Perubahan Iklim</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>3.2. Istilah Dalam Perubahan Iklim</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>3.3. Deskripsi Skenario Proyeksi Iklim</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>BAB IV</td>
<td>PEMODELAN GAS RUMAH KACA DI INDONESIA</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>4.1. Model Analisis GRK</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>4.2. RegCM4</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>4.3. Keluaran GRK Dalam Model RegCM4</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>4.4. Simulasi GRK Dalam Model TAPM</td>
<td>134</td>
</tr>
<tr>
<td>BAB V</td>
<td>PENGAMATAN GAS RUMAH KACA DI INDONESIA</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>5.1. Alat-alat Pengukuran GRK</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>5.2. Stasiun Pemanatau GAW Bukit Kototabang</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>5.3. Pengamatan GRK BMKG</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>5.4. Pengamatan GRK Oleh Institusi Lain</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>5.5. Data GRK Global</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>5.6. Kondisi GRK Dan Aspek Lainnya</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>5.7. Proyeksi GRK</td>
<td>175</td>
</tr>
<tr>
<td>BAB VI</td>
<td>PENGAMATAN DAN PENELITIAN PALEOKLIMAT</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>6.1. Perubahan Iklim Dan Paleoklimat</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>6.2. Dampak Perubahan Iklim Terhadap Variabilitas Iklim</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>6.3. Dampak Perubahan Iklim Terhadap Variabilitas Iklim Laut</td>
<td>222</td>
</tr>
</tbody>
</table>

DAFTAR PUSTAKA 239

RIWAYAT PENULIS 245
DAFTAR GAMBAR

Gambar 1.1. Gambaran umum sirkulasi atmosfer
Gambar 1.2. Simulasi sistem iklim bumi yang dan saling berinteraksi satu sama lain
Gambar 1.3. Perkembangan model dalam laporan IPCC yang menunjukkan keterlibatan sistem iklim secara bertahap
Gambar 1.4. Proses interaksi siklus karbon, air dan variabilitas iklim
Gambar 1.5. Proses dinamik di atmosfer
Gambar 1.6. Diagram proses fisik dan variable model yang terjadi dalam suatu Model iklim
Gambar 1.7. Selubung GRK pada lapisan troposfer diketinggian 7-16 km diatas permukaan bumi
Gambar 1.8. Trend kenaikan uap air selama pengamatan tahun 1980-2006 di Colorado Amerika Serikat
Gambar 1.9. Struktur molekul ozon
Gambar 1.10. Siklus oksigen-ozon di stratosfer (sumber: Wikipedia)
Gambar 1.11. Variasi siklus matahari selama 30 tahun terakhir
Gambar 1.12. Hasil pengukuran konsentrasi CO₂ di Mauna Loa
Gambar 1.13. Perhitungan pemanasan global pada tahun 2001 dari beberapa model iklim berdasarkan skenario SRES A2, yang mengasumsikan tidak ada tindakan yang dilakukan untuk mengurangi emisi.
Gambar 1.15. Diagram dari siklus karbon.
Gambar 3.2. (a) Kondisi Gunung Kalimanjaro di Afrika pada tahun 1970 dan tahun 2000 dengan perubahan mencolok pada tutupan
esnya (b) Kondisi tutupan salju di Amerika sekitar 50 tahun yang lalu dan kondisi sekarang (c) Kontribusi negara/kawasan pada global warming, terlihat Amerika Serikat penyumbang terbesar tetapi Amerika Serikat menolak menyetujui Protokol Kyoto (d) Peningkatan populasinya nyamuk serta perluasan area yang dijangkui akibat temperatur gunung yang makin menghangat kearah puncak, sehingga habitat nyamuk bertambah luas ke arah puncak gunung (e) Menunjukan emisi karbon yang dikeluarkan tiap negara dan Amerika Serikat masih menduduki peringkat pertama.

Gambar 3.3. Skema kerangka perubahan iklim antropogenik, dampak dan respon.

Gambar 3.4. Skenario SRES IPCC

Gambar 3.5. Perbandingan hasil model yang memasukan antropogenik, alami dengan observasi

Gambar 3.6. Perbandingan hasil model untuk enam daerah di Asia.

Gambar 3.7. Proyeksi peningkatan temperatur global pada beberapa skenario iklim.

Gambar 3.8. Diagram SRES

Gambar 3.9. Total global tahunan emisi CO\textsubscript{2} dari semua sumber (energi, industri,dan perubahan tata guna lahan) tahun 1990-2100 (dalam giga ton karbon (GtC/yr)) untuk famili dan 6 skenario group.

Gambar 3.10. Iklim global dan proyeksi iklim menggunakan scenario SRES

Gambar 3.13. Proyeksi perubahan presipitasi DJF, JJA global dalam scenario A1B.

Gambar 3.15. Proyeksi pemanasan permukaan global dan emisi GRK dalam berbagai skenario.

Gambar 3.16. Struktur model IMAGE-EIS/TIMER

Gambar 3.17. Struktur model IMAGE 2/TES

Gambar 3.18. Laju pertumbuhan penduduk dalam skenario B1. ASIAP: Asia Pasifik (India, Bangladesh, Bhutan, Myanmar, Nepal, Pakistan, Sri Lanka, China, Korea DPR, Korea R, Kamboja,
Gambar 3.19. Laju Gross Regional Product (GRP) per kapita dalam skenario B1. 94
Gambar 3.20. Rasio energi dan GRP dalam skenario B1 95
Gambar 3.21. Pemanfaatan energi akhir global dalam skenario B1 95
Gambar 3.22. Pemanfaatan energi primer dalam skenario B1 untuk tiap-tiap sumber energi 96
Gambar 3.23. Pemanfaatan energi primer dalam skenario B1 untuk berbagai wilayah 97
Gambar 3.24. Emisi CO$_2$ dan non-CO$_2$ (ekuivalen) dalam skenario B1 98
Gambar 3.25. Emisi CO$_2$ regional dari pembakaran bahan bakar fosil dalam skenario B1 98
Gambar 3.26. Konsentrasi CO$_2$ dan non-CO$_2$ (ekuivalen) di atmosfer dalam skenario B1 (hasil simulasi IMAGES 2.1) 98
Gambar 3.27. Perubahan temperatur permukaan rata-rata dalam skenario B1 (hasil simulasi IMAGES 2.1) 99
Gambar 3.29. Total Global Tahunan Emisi CO$_2$ dari Semua Sumber (Energi, Industri dan Perubahan Tata Guna Lahan) Tahun 1990 - 2100 (dalam giga ton karbon (GtC/yr)) skenario B2 100
Gambar 3.30. Arah dan kecuraman skenario B2 100
Gambar 3.31. Perubahan temperatur rata-rata global change 101
Gambar 3.32. Proyeksi konsentrasi CO$_2$ global dan Indonesia menggunakan beberapa skenario proyeksi iklim. 109
Gambar 4.2. Skema representasi yang menunjukkan grid-B Arakawa secara horisontal yang ditunjukkan dengan tanda bulatan dan tanda silang 117

Gambar 4.12. Conformal Cubic Grid pada CCAM.

Gambar 4.13. Grid C48 CCAM.

Gambar 5.1. AQM dengan masing-masing fungsinya.

Gambar 5.2. Keluaran hasil pengamatan AQM berupa CO (Carbon monoxide), NOx (Nitrogen oxide), SO2 (Sulfur dioxide), dan O3 (ozon).

Gambar 5.3. Lokasi pengamatan GRK di Balongan, Indramayu menggunakan AQM60.

Gambar 5.4. (a) Lokasi survey di gerbang Tol Cikampek dan (b) hasil pengamatan berupa NO2.

Gambar 5.5. Lokasi pengamatan GRK PLTU Suralaya Merak, Jawa Barat.

Gambar 5.7. Perbandingan Trend konsentrasi CO$_2$ Global (garis biru), Mauna Loa (garis merah) dan Stasiun GAW Bukit Kototabang (garis hijau).

Gambar 5.10. Ozone Analyzer type TEI 49C dan Ozone Calibrator TEI 49 PS sebagai kalibrator.

Gambar 5.12. CO$_2$-CH$_4$-H$_2$O Analyzer Picarro Model G1301 untuk pemantauan GRK:Karbon Dioksida-Metana

Gambar 5.13. SO$_2$ Analyzer Thermo Scientific Model 43i Trace Level untuk pengamatan konsentrasi sulfur dioksida di Bukit Kototabang

Gambar 5.14. Analyzer Thermo Scientific Model 42i Trace Level Enhanced untuk pengamatan konsentrasi oksida nitrogen di Bukit Kototabang

Gambar 5.15. Karbondioksida GMP 343

Gambar 5.16. Alat ECOMAC

Gambar 5.17. Data rerata bulanan konsentrasi gas CO$_2$ yang terukur di Bukit Kototabang. Daerah hijau merupakan batas ±σ dari setiap nilai. Garis merah menandakan kecenderungan konsentrasi CO$_2$ sejak tahun 2004-2011

Gambar 5.18. Data rerata bulanan konsentrasi gas CH$_4$ yang terukur di Bukit Kototabang. Daerah hijau merupakan batas ±σ dari setiap nilai. Garis merah menandakan kecenderungan konsentrasi CH$_4$ sejak tahun 2004-2011

Gambar 5.25. Rata-rata bulan profil ozon Indonesia (kiri) dan variasi musiman profil ozon (kanan)

Gambar 5.26. Time series konsentrasi ozon pada tekanan 2 hPa (atas), 10 hPa (tengah) dan 20 hPa (bawah)

Gambar 5.27. Time series emisi GRK non unsur LULUCF

Gambar 5.28. Time series emisi GRK dengan unsur LULUCF

Gambar 5.29. Perubahan emisi GRK di beberapa Negara yang memasukan tanpa LULUCF

Gambar 5.30. Perubahan emisi GRK di beberapa Negara yang memasukan LULUCF

Gambar 5.31. Konsentrasi karbondioksida di ketinggian 500 mbar (5 Km) diatas wilayah Indonesia pada bulan Januari 2011. Data diambil dari satelit Aqua/AIRS.

Gambar 5.32. Konsentrasi karbondioksida di ketinggian 500mbar (5 Km) diatas wilayah Indonesia pada bulan Agustus 2011. Data diambil dari satelit Aqua/AIRS.

Gambar 5.38. Trajektori ozon dalam berbagai ketinggian dengan sumbser ozon dari Watukosek pada 26 Januari 2011 (NASA).

Gambar 5.39. Proyeksi populasi penduduk Indonesia sampai tahun 2100

Gambar 5.40. Proyeksi GDP Indonesia sampai tahun 2100 dalam trilyun dollar USA

Gambar 5.41. Proyeksi pendapatan perkapita Indonesia sampai tahun 2100 dalam dollar USA,2100

Gambar 5.42. Struktur energi Indonesia

Gambar 5.43. Proyeksi penyerapan CO₂ oleh energi angin di Indonesia sampai tahun 2050
Gambar 5.44. Proyeksi penyerapan CO₂ oleh energi panas bumi di Indonesia sampai tahun 2050
Gambar 5.45. Proyeksi emisi karbon Indonesia dari sektor energi dan deforestasi
Gambar 5.46. Proyeksi emisi dan konsentrasii SO₂ Indonesia
Gambar 5.47. Proyeksi emisi dan konsentrasii NO₂ Indonesia
Gambar 5.48. Proyeksi persentasi kematian dari populasi akibat konsentrasii SO₂ di Indonesia
Gambar 5.49. Proyeksi persentasi biaya kematian dari GDP akibat konsentrasii SO₂ di Indonesia
Gambar 5.50. Proyeksi persentasi kematian dari populasi akibat konsentrasii NO₂ di Indonesia
Gambar 5.51. Emisi karbon Indonesia dari sektor energi dan deforestasi
Gambar 6.1. Lokasi Pengambilan sample air hujan
Gambar 6.2. Grafik isotop Oksigen dan Deterium berdasarkan waktu pengamatan
Gambar 6.3. Grafik isotop Oksigen dan Deterium berdasarkan ketinggian tempat
Gambar 6.4. Beberapa aktivitas proses pengambilan sampel es di Puncak Jaya Papua. Dari kiri atas searah jarum jam adalah; pesawat helikopter untuk mengangkat peralatan pengambilan sampel es, proses pengeboran es, genset untuk sumber energi selama berada di lokasi gletser, dan tempat penyimpanan sampel es di Tembaga Pura sebelum diteruskan ke laboratorium di BPR, Ohio State University, Columbus Amerika Serikat.
Gambar 6.5. Perkembangan lapisan es di Puncak Jaya dari tahun 1936 (a) tahun 1991 (b) sampai tahun 2001 (c)
Gambar 6.6. Grafik garis liner penurunan luasan lapisan es dari tahun 1850 sampai 2006
Gambar 6.7. Distribusi suhu pada (a) 500 hPa dan (b) suhu permukaan laut yang menggambarkan pemanasan di daerah tropik khusunya di kolam hangat Pasifik Barat. Curah hujan yang tinggi (c) mencerminkan panasnya suhu permukaan dan lapisan atas atmosfer. Tanda bintang adalah dua lokasi puncak gunung es yang datanya dapat digunakan untuk merekonstruksi suhu di atmosfer dimasa yang lalu.
menunjukkan korelasi gabungan dari ketiga lokasi pencatatan.

Gambar 6.9. Catatan kondisi lingkungan dimasa lalu yang dapat diperoleh dari hasil pengeboran inti es seperti suhu, curah hujan, kimia atmosfer, kekeruhan atmosfer, perubahan vegetasi sejarah letusan gunung, emisi yang diakibatkan ulah manusia dan jasad mahluuk hidup yang mati pada lapisan es.

Gambar 6.11. Spektrum komposit variabilitas iklim untuk 10 juta tahun

Gambar 6.13. Identifikasi perubahan iklim secara statistik dari (a)perubahan nilai rerata (mean), (b)perubahan variansi, dan (c)perubahan nilai rerata dan variansi. Sumbu vertikal menyatakan peluang dan sumbu horizontal menyatakan nilai parameter (iklim). (Dianadaptasi dari Meehl, 2000).

Gambar 6.15. Peta proyeksi perubahan variabilitas hujan Indonesia tahun 2050 (Mahmud, 2010)

Gambar 6.16. Diagram alir regional climate downscaling dengan CCAM

Gambar 6.17. Proses running model iklim CCAM

Gambar 6.20. Variabilitas iklim Indonesia keluaran model CSIRO Mk.3.0 2050

Gambar 6.21. Variabilitas iklim Indonesia keluaran model CSIRO Mk.3.0 2099

Gambar 6.22. Probabilitas CH Pontianak observasi, model dan hasil proyeksi model

Gambar 6.23. Probabilitas temperatur Pontianak observasi, model dan hasil proyeksi model

Gambar 6.27. Analisis regression map antara indeks Niño3.4 dengan suhu permukaan laut dan arus permukaan dari data SODA reanalisis selama 45 tahun (SODA reanalisis 1960-2004) 229
Gambar 6.28. Analisis komposit variabilitas tinggi paras laut dalam cm (1960-2004) pada saat Lanina, El Nino dan Klimatologi 231
Gambar 6.29. Spatial trend analysis tinggi muka laut berdasarkan proyeksi tahun 2100 berdasarkan skenario IPCC SRES A1B 233
Gambar 6.31. Proyeksi perubahan variabilitas ENSO menggunakan scenario IPCC A1B (a) time series Nino3 index hasil proyeksi, (b) wavelet spectrum dan (c) global wavelet dari (a) serta (d) cuplikan skala 2-8 tahun sebagai representasi frekuensi ENSO. 235
DAFTAR TABEL

Tabel 1.1. Ikhtisar Gas-gas Rumah Kaca di Atmosfer 10

Tabel 3.1. Analisis pengaruh manusia pada kecendrungan dan proyeksi cuaca ekstrim 85

Tabel 3.2. Proyeksi rata-rata pemanasan global dan kenaikan permukaan laut 85

Tabel 3.3. Model GCM untuk skenario emisi SRES 105

Tabel 3.4. Parameter dalam model-model yang menjalankan skenario emisi SRES 106

Tabel 4.1. Parameter RegCM4 dalam kelompok parameter radiasi 127

Tabel 4.2. Tabel daftar sigma level dan ketinggian CCAM 136

Tabel 5.1. Emisi Indonesia dalam skenario IPCC tahun 2000-2012 175

Tabel 6.1. Beberapa informasi paleoklimat penting yang diperoleh dari inti es 190

Tabel 6.2. Skema model fisik yang digunakan 215
BAB 1
PENDAHULUAN

1.1 Sistem Iklim

Gambar 1.1. Gambaran umum sirkulasi atmosfer
(Sumber :http://cimss.ssec.wisc.edu/sage/oceanography/lesson3/images/GlobalWinds.jpg)

geografis cenderung berhenti di benua atau di pegunungan meskipun lebar cakupan sirkulasi tersebut dapat berubah sewaktu-waktu. Karena pola sirkulasi ini, musim dingin yang sangat dingin di Amerika Utara dapat berhubungan dengan musim dingin yang sangat panas di belahan bumi yang lain. Perubahan dalam berbagai aspek sistem iklim, seperti perubahan lebar ukuran padang es, perubahan jenis dan distribusi vegetasi, perubahan temperatur atmosfer atau laut akan memengaruhi sirkulasi atmosfer dan laut dalam skala yang besar. Kondisi diatas sangat penting pengaruhnya dalam membentuk iklim suatu tempat (Gambar.1.2).

Gambar 1.2. Simulasi sistem iklim bumi yang dan saling berinteraksi
(Sumber: http://www.nsf.gov/geo/adgeo/geo2000/ideas_society.jsp)

Gambar 1.3. Perkembangan model dalam laporan IPCC yang menunjukkan keterlibatan sistem iklim secara bertahap (Sumber: IPCC, 2007)
1.2 Interaksi Iklim

Proses interaksi yang terjadi dalam iklim pada suatu lokasi melibatkan beberapa sistem iklim salah satunya ditunjukkan Gambar 1.4. Proses tersebut menunjukkan siklus karbon, air dan pengaruhnya pada variabilitas iklim. Pada tiap tahapan terlihat proses interaksi yang saling mempengaruhi dan terlihat juga pada tiap proses interaksi tersebut terjadi proses-proses yang lebih detail terjadi.

Gambar 1.4. Proses interaksi siklus karbon, air dan variabilitas iklim
(Sumber: IPCC, 2007)

Selanjutnya, proses-proses dinamik tersebut dapat diklasifikasikan berdasarkan skala luas area yang dipengaruhi dan berdasarkan skala waktu lama terjadinya (Gambar 1.5). Misalnya proses konveksi cumulus memiliki rentang skala waktu 1 menit-1 jam dengan rentang area yang dipengaruhi sekitar 100-1000 m. Pemahaman tentang proses-proses di atas sangat penting dalam menganalisis fenomena iklim yang terjadi pada suatu lokasi. Contohnya adalah presipitasi yang terjadi di Indonesia,
pemahaman tentang skema konveksi, topografi, sirkulasi monsun, pola presipitasi dan sebagainya sangat penting untuk pemahaman yang lebih mendalam tentang proses-proses tersebut. Kompleksitas proses-proses fisis dan dinamis yang terjadi di Indonesia atau suatu lokasi yang dijadikan bahan kajian digambarkan dalam suatu model iklim (Gambar 1.6). Pemahaman tentang kondisi ini sangat penting dalam menjelaskan konsep-konsep fisika dan dinamis yang terjadi di suatu lokasi. Berbagai penelitian telah dilakukan untuk mengkaji bagaimana suatu sistem iklim saling berinteraksi membentuk pola iklim di lokasi tertentu. Salah satu alat yang paling memungkinkan adalah dengan menggunakan model iklim. Model iklim seperti RegCM dan CCSM digunakan untuk mempelajari proses iklim. Model iklim RegCM4 misalnya, digunakan untuk mempelajari proses iklim, mengkaji bagaimana pengaruh topografi, SST, land use terhadap presipitasi sedangkan CCSM3 untuk mengkaji aspek pengaruh skala global terhadap iklim di Indonesia khususnya presipitasi.

Gambar 1.5. Proses dinamik di atmosfer (Sumber: Charney, 1948)
Gambar 1.6. Diagram proses fisik dan variabel model yang terjadi dalam suatu model iklim (Sumber: Charney, 1948)

1.3 Benua Maritim Indonesia

Wilayah Indonesia yang oleh Ramage (1971) disebut sebagai Benua Maritim memiliki cakupan yang luas. Wilayah ini terbentang di sekitar garis
khatulistiwa berbentuk kepulauan *(archipelagoes)*. Menurut Hukum Internasional tahun 1982, wilayah benua maritim Indonesia dibatasi oleh beberapa lokasi (Sandy, 1995). Batas paling Barat berada di Pulau Rondo dengan koordinat 06°05' LU, 95°06' BT. Batas paling utara berada di Laut Sulawesi terdapat Pulau Miangas dengan koordinat 05°35' LU, 126°35' BT. Batas paling Selatan berada di Pulau Permana dengan koordinat 10°25' LS, 122°20' BT. Sementara itu, batas paling Timur berada di bagian Sungai Fly di Pulau Papua dengan koordinat 08°30' LS, 143°41' BT.

1.4 Gas Rumah Kaca

Gas rumah kaca (GRK) adalah gas-gas yang ada di atmosfer yang menyebabkan efek rumah kaca. Gas-gas tersebut sebenarnya muncul secara alami di lingkungan, tetapi dapat juga timbul akibat aktivitas manusia. Gas rumah kaca yang paling banyak adalah uap air yang mencapai atmosfer akibat penguapan air dari laut, danau dan sungai. Karbondioksida adalah gas terbanyak kedua. Ia timbul dari berbagai proses alami seperti: letusan vulkanik; pernapasan hewan dan manusia (yang menghirup oksigen dan menghembuskan karbondioksida); dan pembakaran material organik (seperti tumbuhan). Karbondioksida dapat berkurang karena terserap oleh lautan dan diserap tanaman untuk digunakan dalam proses fotosintesis. Fotosintesis memecah karbondioksida dan melepaskan oksigen ke atmosfer serta mengambil atom karbonnya. Pengertian lain adalah bahwa GRK atau Green House Gases (GHG) adalah beberapa jenis gas yang terperangkap di atmosfer dan berfungsi seperti atap rumah kaca yang mampu menerima radiasi gelombang panjang matahari, namun menahan radiasi inframerah yang diemisikan oleh permukaan bumi. Gas-gas yang dimaksud antara lain adalah Karbon dioksida (CO$_2$), Metan (CH$_4$), Nitrous Oksida (N$_2$O), Hydrofluorokarbon (HFCs), Perfluorokarbon (PFCs) dan Sulfur heksaflorida (SF$_6$) (Tabel 1.1).

Sumber gas-gas rumah kaca tersebut dapat terbagi menjadi dua yaitu alami dan akibat aktifitas manusia. Gas rumah kaca yang terjadi secara alami adalah CO$_2$, metana. Sedangkan gas yang dihasilkan akibat aktifitas manusia antara lain CO$_2$ (Proses pembakaran bahan bakar fosil), NO$_2$ (aktifitas pertanian dan industri), CFC, HFC, PFC (proses industri dan konsumen). Selubung gas rumah kaca tepatnya terdapat di lapisan troposfer pada ketinggian 7-16 km di atas permukaan bumi (Gambar 1.7).
Tabel 1.1. Ikhtisar Gas-gas Rumah Kaca di Atmosfer *(Killeen. 1996)*

<table>
<thead>
<tr>
<th>Gas</th>
<th>Sumber Antropogenik utama</th>
<th>Waktu residu</th>
<th>Umur (tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Pembakaran bahan bakar fosil dan biomas</td>
<td>Bulanan</td>
<td>0,4</td>
</tr>
<tr>
<td>CO2</td>
<td>Pembakaran bahan bakar fosil dan Pembabatan hutan</td>
<td>100 tahunan</td>
<td>7</td>
</tr>
<tr>
<td>CH4</td>
<td>Pertanaman padi</td>
<td>10 tahunan</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Peternakan, tanam Produksi bahan bakar fosil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>Pembakaran bahan bakar fosil dan biomas</td>
<td>harian</td>
<td>***</td>
</tr>
<tr>
<td>NO2</td>
<td>Pemupukan Nitrogen</td>
<td>170 tahunan</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Pembabatan hutan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembakaran biomas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO2</td>
<td>Pembakaran bahan bakar fosil dan emisi bahan bakar</td>
<td>Harian – mingguan</td>
<td>***</td>
</tr>
<tr>
<td>CFCs</td>
<td>Semprotan aerosol, Pendingin, busa</td>
<td>60-100 tahunan</td>
<td>8 – 110</td>
</tr>
</tbody>
</table>

Macam-Macam GRK

- **Ekososfer**
 Ketinggian 400 km

- **Termosfer**
 300 km

- **Mesosfer**
 50 km

- **Stratosfer**
 40 km

- **Troposfer**
 10 km

Gambar 1.7. Selubung GRK pada lapisan troposfer di ketinggian 7-16 km di atas permukaan bumi.

1. Uap Air

Uap air adalah gas rumah kaca yang timbul secara alami dan bertanggung jawab terhadap sebagian besar dari efek rumah kaca.
Konsentrasi uap air berfluktuasi secara regional, dan aktivitas manusia tidak secara langsung memengaruhi konsentrasi uap air kecuali pada skala lokal. Dalam model iklim, meningkatnya temperatur atmosfer yang disebabkan efek rumah kaca akibat gas-gas *anthropogenic* akan menyebabkan meningkatnya kandungan uap air di troposfer, dengan kelembapan relatif yang agak konstan. Meningkatnya konsentrasi uap air mengakibatkan meningkatnya efek rumah kaca, yang mengakibatkan meningkatnya temperatur dan kembali semakin meningkatkan jumlah uap air di atmosfer. Keadaan ini terus berkelanjutan sampai mencapai titik ekuilibrium (kesetimbangan). Oleh karena itu, uap air berperan sebagai umpan balik positif terhadap aksi yang dilakukan manusia yang melepaskan gas-gas rumah kaca seperti CO$_2$. Perubahan dalam jumlah uap air di udara juga berakibat secara tidak langsung melalui terbentuknya awan. Kenaikan uap air yang didokumentasikan dengan baik terjadi di Colorado, Amerika Serikat (Gambar 1.8). Kecenderungan naiknya uap air terjadi dari tahun 1980-2006 pada rentang ketinggian 20-22 km (Gambar 1.8.a) dan kenaikan pada rentang 10-30 km (Gambar 1.8.b).

2. Karbondioksida
Manusia telah meningkatkan jumlah karbondioksida yang dilepas ke atmosfer ketika mereka membakar bahan bakar fosil, limbah padat, dan kayu untuk menghangatkan bangunan, menggerakkan kendaraan dan menghasilkan listrik. Pada saat yang sama, jumlah pepohonan yang mampu menyerap karbon dioksida semakin berkurang akibat perambahan hutan untuk diambil kayunya maupun untuk perluasan lahan pertanian.

Walaupun lautan dan proses alam lainnya mampu mengurangi karbon dioksida di atmosfer, aktivitas manusia yang melepaskan karbon dioksida ke udara jauh lebih cepat dari kemampuan alam untuk menguranginya. Pada tahun 1750, terdapat 281 molekul karbon dioksida pada satu juta molekul udara (281 ppm). Pada Januari 2007, konsentrasi karbon dioksida telah mencapai 383 ppm (peningkatan 36 %).
Jika prediksi saat ini benar, pada tahun 2100, karbon dioksida akan mencapai konsentrasi 540 hingga 970 ppm. Estimasi yang lebih tinggi malah memperkirakan bahwa konsentrasinya akan meningkat tiga kali lipat bila dibandingkan masa sebelum revolusi industri.

3. Metana

4. Nitrogen Oksida
Nitrogen oksida adalah gas insulator panas yang sangat kuat. Ia dihasilkan terutama dari pembakaran bahan bakar fosil dan oleh lahan pertanian. Nitrogen oksida dapat menangkap panas 300 kali lebih besar...
dari karbon dioksida. Konsentrasi gas ini telah meningkat 16 % bila dibandingkan masa pre-industri.

5. Gas lainnya

\[a \text{C}_x\text{H}_y + b \text{O}_2 \rightarrow c \text{CO} + d \text{CO}_2 + e \text{H}_2\text{O} \]

Karbon monoksida pertama kali ditemukan oleh de Lassone pada tahun 1776 ketika ia memanaskan seng oksida dengan kalsium karbonat. Semula ia menduga gas yang dihasilkan berupa hidrogen karena memberikan nyala berwarna biru. Baru pada tahun 1800, ilmuwan Inggris bernama William Cumberland Cruickshank mengidentifikasikannya sebagai senyawa yang mengandung karbon dan oksigen.

Karbon monoksida merupakan salah satu polutan udara yang berbahaya karena apabila masuk ke sistem pernapasan akan
menyebabkan manusia yang menghirupnya akan mengalami sesak napas. Hal ini diakibatkan CO jauh lebih mudah berikatan dengan hemoglobin darah membentuk karboksi-haemoglobin daripada oksigen dengan hemoglobin sehingga asupan oksigen di dalam tubuh menjadi berkurang. Selain itu CO juga merupakan prekursor dalam pembentukan senyawa toksik dan berbahaya lainnya seperti NO$_2$ dan ozon permukaan.

Konsentrasi ozon yang di atmosfer bumi mencapai 0.00006 % dari total. Keberadaannya di atmosfer bumi tersebar di dua lapisan terbawah atmosfer, yakni stratosfer dan troposfer. Di lapisan stratosfer, lapisan ozon yang ada di sana sangat berguna untuk melindungi bumi dari radiasi sinar ultraviolet yang dipancarkan oleh matahari. Berbeda dengan ozon stratosferik, ozon yang berada di lapisan troposfer sebaliknya sangat berbahaya bagi manusia. Meskipun jumlahnya hanya sebesar 8 % dari total konsentrasi ozon di atmosfer, ozon troposferik dianggap sebagai salah polutan udara karena pada konsentrasi yang tinggi, senyawa ini dapat mengganggu kesehatan terutama pada sistem pernapasan. Selain itu senyawa ini juga merupakan salah satu komponen terbentuknya kabut asap yang sangat berbahaya yang disebut dengan 'smog'.

Ozon troposferik tersebar pada ketinggian 10-18 km dari permukaan bumi. Proses terbentuknya ozon troposferik terjadi karena adanya senyawa-senyawa prekursor seperti oksida nitrogen (NOx), karbon monoksida (CO), dan senyawa organik yang mudah menguap (Volatile Organic Compounds/VOC), yang bereaksi dengan bantuan cahaya
matahari. Pembentukan ozon troposferik melalui karbon monoksida dimulai dengan reaksi CO dengan radikal hidroksil membentuk atom H dan karbon dioksida. Atom H yang terbentuk akan bereaksi secara cepat dengan oksigen membentuk radikal peroksi (HO₂).

\[
\begin{align*}
OH + CO &\rightarrow H + CO_2 \\
H + O_2 &\rightarrow HO_2 \\
\end{align*}
\]

Radikal peroksi yang terbentuk kemudian bereaksi dengan NO membentuk NO₂ yang kemudian mengalami fotolisis dan salah satu atom O akan bereaksi dengan oksigen membentuk ozon.

\[
\begin{align*}
HO_2 + NO &\rightarrow OH + NO_2 \\
NO_2 + hv &\rightarrow NO + O \\
O + O_2 &\rightarrow O_3 \\
\end{align*}
\]

Reaksi pembentukan ozon melalui VOC jauh lebih kompleks, namun memiliki reaksi yang sama pada tahapan kritis dalam pembentukan ozon yaitu reaksi radikal peroksi dengan NO.

Ozon merupakan molekul triatomik, yang tersusun oleh tiga molekul oksigen dan bersifat lebih tidak stabil bila dibandingkan dengan oksigen. Ozon terdapat di lapisan atmosfer bumi, yaitu di stratosfer dan troposfer. Ozon di lapisan stratosfer, disebut juga sebagai lapisan ozon, berperan sebagai lapisan pelindung bumi dari sinar ultraviolet yang berbahaya bila masuk ke bumi dengan intensitas yang tinggi. Lapisan ozon pada stratosfer terletak diantara 10 sampai dengan 50 km di atas permukaan bumi.
Akan tetapi, ozon di lapisan troposfer yang disebut juga ozon permukaan adalah pencemar sekunder yang terbentuk akibat reaksi kompleks antara prekurorsornya, yaitu NOx (nitrogen oksida) dan hidrokarbon dengan pemanasan sinar matahari. Reaksi pembentukan ozon ini terutama terjadi di daerah dengan tingkat polusi tinggi atau bisa juga beberapa kilometer dari sumber polusi akibat tertip angin. Ozon bersifat sangat reaktif dan berbahaya bagi kesehatan manusia. Ozon adalah oksidator kuat yang bisa bereaksi dengan senyawa kimia lain membentuk oksidan yang beracun.

Gambar 1.10. Siklus oksigen-ozon di stratosfer(sumber: Wikipedia)
Mekanisme reaksi fotokimia berperan dalam peningkatan jumlah ozon di lapisan stratosfer. Sinar matahari mengenai molekul oksigen di stratosfer dan memecahkanannya secara fotolisis menghasilkan dua atom oksigen radikal. Atom oksigen radikal ini kemudian bereaksi dengan molekul oksigen yang masih tersisa menghasilkan ozon. Siklus pembentukan ozon ini kemudian disebut sebagai siklus oksigen-ozon. Reaksinya seperti berikut:

\[
O_2 + hv \rightarrow O_2^+ (panjang gelombang kurang dari 240 \text{ nm})
\]

\[
O_2^+ + O \rightarrow O_3
\]

Net: \[3O_2 + hv \rightarrow 2O_3 (reaksi lambat)\]

Ozon di troposfer berasal 10% dari transport ozon di stratosfer. Selain itu, sumber ozon di troposfer juga berasal dari aktivitas manusia dengan mekanisme yang sedikit berbeda dengan ozon di stratosfer.

1. **Ozon total**
 Ozon total meliputi seluruh konsentrasi ozon yang ada di lapisan stratosfer maupun troposfer.

2. **Ozon permukaan**

3. **Radiasi UV**
 Untuk memonitor adanya penipisan lapisan ozon di Indonesia, pengamatan intensitas radiasi UV-A (315-400 nm) dan UV-B (280-315 nm)
sebagai salah satu indikator kuantitas konsentrasi ozon. Peralatan yang digunakan adalah UV Pyranometer.

Data kondisi Ozon global (dunia) dan ozon di Indonesia telah di sediakan oleh beberapa institusi internasional di antaranya oleh OMI. Data yang diperoleh dari OMI (Ozone Monitoring Instrument) dibawa oleh satelit Aura (Sumber: GES-DISC-DAAC). Kondisi ozon global dan Indonesia yang ditampilkan adalah ozon total yaitu kerapatan horizontal (jumlah molekul ozon per satuan luas). Satuan yang digunakan adalah DU (Dobson Unit) yang setara dengan 2.69×10^{20} molekul/m². Program SHADOZ (Southern Hemisphere ADDitional OZONEsondes) dilaksanakan oleh LAPAN melalui peluncuran ozonsonde secara rutin dan mengkoordinir peluncuran tambahan pada kasus-kasus dimana ada fenomena tertentu di atmosfer. Program ini didukung oleh 14 stasiun peluncuran ozonsonde di belahan bumi selatan yang rutin melakukan peluncuran ozonsonde secara simultan. Datanya dikumpulkan dalam pusat arsip data ozon secara internasional.

Istilah yang digunakan untuk menjelaskan meningkatnya suhu udara di permukaan bumi, akibat terus meningkatnya konsentrasi CO₂ dan gas-gas rumah kaca (GRK) anthropogenic lainnya di atmosfer dikenal dengan efek rumah kaca.

Efek rumah kaca disebabkan karena naiknya konsentrasi gas karbon dioksida \((\text{CO}_2)\) dan gas-gas lainnya di atmosfer. Kenaikan konsentrasi gas \(\text{CO}_2\) ini disebabkan oleh kenaikan pembakaran bahan bakar minyak, batu bara dan bahan bakar organik lainnya yang melampaui kemampuan tumbuhan-tumbuhan dan laut untuk menyerapnya.

Energi yang masuk ke Bumi:
- 25% dipantulkan oleh awan atau partikel lain di atmosfer
- 25% diserap awan
- 45% diserap permukaan bumi
- 5% dipantulkan kembali oleh permukaan bumi

Energi yang diserap dipantulkan kembali dalam bentuk radiasi inframerah oleh awan dan permukaan bumi. Namun sebagian besar inframerah yang dipancarkan bumi tertahan oleh awan dan gas \(\text{CO}_2\) dan gas lainnya, untuk dikembalikan ke permukaan bumi. Dalam keadaan normal, efek rumah kaca diperlukan, dengan adanya efek rumah kaca perbedaan suhu antara siang dan malam di bumi tidak terlalu jauh berbeda.

Selain gas \(\text{CO}_2\), yang dapat menimbulkan efek rumah kaca adalah belerang dioksida, nitrogen monoksida \((\text{NO})\) dan nitrogen dioksida \((\text{NO}_2)\)
serta beberapa senyawa organik seperti gas metana dan klorofluorokarbon (CFC). Gas-gas tersebut memegang peranan penting dalam meningkatkan efek rumah kaca.

1.5 Pemanasan Global

Pemanasan global adalah suatu proses meningkatnya temperatur rata-rata atmosfer, laut, dan daratan Bumi. Temperatur rata-rata global pada permukaan Bumi telah meningkat 0,74 ± 0,18 °C (1,33 ± 0,32 °F) selama seratus tahun terakhir. Intergovernmental Panel on Climate Change (IPCC) menyimpulkan, bahwa sebagian besar peningkatan temperatur rata-rata global sejak pertengahan abad ke-20 kemungkinan besar disebabkan oleh meningkatnya konsentrasi gas-gas rumah kaca akibat aktivitas manusia melalui efek rumah kaca. Kesimpulan dasar ini telah dikemukakan oleh setidaknya 30 badan ilmiah dan akademik, termasuk semua akademi sains nasional dari negara-negara G8. Akan tetapi, masih terdapat beberapa ilmuwan yang tidak setuju dengan beberapa kesimpulan yang dikemukakan IPCC tersebut. Model iklim yang dijadikan acuan oleh projek IPCC menunjukkan temperatur permukaan global akan meningkat 1,1 - 6,4 °C (2,0 - 11,5 °F) antara tahun 1990 dan 2100. Perbedaan angka perkiraan itu disebabkan oleh penggunaan skenario-skenario berbeda mengenai emisi gas-gas rumah kaca pada masa mendatang, serta model-model sensitivitas iklim yang berbeda. Walaupun sebagian besar penelitian terfokus pada periode hingga 2100, pemanasan dan kenaikan muka air laut diperkirakan akan terus berlanjut selama lebih dari seribu tahun walaupun tingkat emisi gas rumah kaca telah stabil. Ini mencerminkan besarnya kapasitas kalor lautan.

Meningkatnya temperatur global diperkirakan akan menyebabkan perubahan-perubahan yang lain seperti naiknya permukaan air laut, meningkatnya intensitas fenomena cuaca yang ekstrem, serta perubahan jumlah dan pola presipitasi. Akibat-akibat pemanasan global yang lain
adalah terpengaruhnya hasil pertanian, hilangnya gletser, dan punahnya berbagai jenis hewan. Beberapa hal yang masih diragukan para ilmuwan adalah mengenai jumlah pemanasan yang diperkirakan akan terjadi pada masa depan, dan bagaimana pemanasan serta perubahan-perubahan yang terjadi tersebut akan bervariasi dari satu daerah ke daerah yang lain. Hingga saat ini masih terjadi perdebatan politik dan publik di dunia mengenai tindakan apa yang harus dilakukan untuk mengurangi atau membalikkan pemanasan lebih lanjut atau untuk beradaptasi terhadap konsekuensi-konsekuensi yang ada. Sebagian besar pemerintahan negara-negara di dunia telah menandatangani dan meratifikasi Protokol Kyoto, yang mengarah pada pengurangan emisi gas-gas rumah kaca.

1. Efek rumah kaca

Efek rumah kaca ini sangat dibutuhkan oleh segala makhluk hidup

2. Efek umpan balik

Efek umpan balik karena pengaruh awan sedang menjadi objek penelitian saat ini. Bila dilihat dari bawah, awan akan memantulkan kembali radiasi infra merah ke permukaan, sehingga akan meningkatkan efek pemanasan. Sebaliknya bila dilihat dari atas, awan tersebut akan memantulkan sinar Matahari dan radiasi infra merah ke angkasa, sehingga meningkatkan efek pendinginan. Apakah efek netto-nya menghasilkan pemanasan atau pendinginan tergantung pada beberapa detail-detail tertentu seperti tipe dan ketinggian awan tersebut. Detail-detail ini sulit direpresentasikan dalam model iklim, antara lain karena awan sangat kecil bila dibandingkan dengan jarak antara batas-batas komputasional dalam model iklim (sekitar 125 hingga 500 km untuk model yang digunakan dalam...
Laporan IPCC ke Empat, AR4). Walaupun demikian, umpan balik awan berada pada peringkat dua bila dibandingkan dengan umpan balik uap air dan dianggap positif (menambah pemanasan) dalam semua model yang digunakan dalam Laporan IPCC ke Empat (AR4).

Umpan balik positif akibat terlepasnya CO\textsubscript{2} dan CH\textsubscript{4} dari melunaknya tanah bekas (permafrost) adalah mekanisme lainnya yang berkontribusi terhadap pemanasan. Selain itu, es yang meleleh juga akan melepas CH\textsubscript{4} yang juga menimbulkan umpan balik positif. Kemampuan lautan untuk menyerap karbon juga akan berkurang bila ia menghangat, hal ini diakibatkan oleh menurunnya tingkat nutrisi pada zona mesopelagic sehingga membatasi pertumbuhan di atom daripada fitoplankton yang merupakan penyerap karbon yang rendah.

![Solar Cycle Variations](image)

Gambar 1.11. Variasi siklus matahari selama 30 tahun terakhir (Sumber: IPCC, 2007).

Pada tahun 2006, sebuah tim ilmuwan dari Amerika Serikat, Jerman dan Swiss (Foukal, 2006) menyatakan bahwa mereka tidak menemukan adanya peningkatan tingkat "keterangan" dari Matahari pada seribu tahun terakhir ini. Siklus Matahari hanya memberi peningkatan kecil sekitar 0,07% dalam tingkat "keterangannya" selama 30 tahun terakhir. Efek ini
terlalu kecil untuk berkontribusi terhadap pemanasan global. Sebuah penelitian oleh Lockwood dan Fröhlich (Lockwood,2007) menemukan bahwa tidak ada hubungan antara pemanasan global dengan variasi Matahari sejak tahun 1985, baik melalui variasi dari output Matahari maupun variasi dalam sinar kosmis.

Gambar 1.12. Hasil pengukuran konsentrasi CO₂ di Mauna Loa (Sumber: IPCC,2007)

Para ilmuwan juga telah lama menduga bahwa iklim global semakin menghangat, tetapi mereka tidak mampu memberikan bukti-bukti yang tepat. Temperatur terus bervariasi dari waktu ke waktu dan dari lokasi yang satu ke lokasi lainnya. Perlu bertahun-tahun pengamatan iklim untuk memperoleh data-data yang menunjukkan suatu kecenderungan (trend)

Dalam laporan yang dikeluarkannya tahun 2001, Intergovernmental Panel on Climate Change (IPCC) menyimpulkan bahwa temperatur udara global telah meningkat 0,6 °C (1 °F) sejak 1861. Panel setuju bahwa pemanasan tersebut terutama disebabkan oleh aktivitas manusia yang menambah gas-gas rumah kaca ke atmosfer. IPCC memprediksi peningkatan temperatur rata-rata global akan meningkat 1.1 - 6.4 °C (2.0 - 11.5 °F) antara tahun 1990 dan 2100.

IPCC panel juga memperingatkan, bahwa meskipun konsentrasi gas di atmosfer tidak bertambah lagi sejak tahun 2100, iklim tetap terus menghangat selama periode tertentu akibat emisi yang telah dilepaskan sebelumnya. Karbon dioksida akan tetap berada di atmosfer selama seratus tahun atau lebih sebelum alam mampu menyerapnya kembali.

Jika emisi gas rumah kaca terus meningkat, para ahli memprediksi, konsentrasi karbon dioksida di atmosfer dapat meningkat hingga tiga kali lipat pada awal abad ke-22 bila dibandingkan masa sebelum era industri. Akibatnya, akan terjadi perubahan iklim secara dramatis. Walaupun
sebenarnya peristiwa perubahan iklim ini telah terjadi beberapa kali sepanjang sejarah Bumi, manusia akan menghadapi masalah ini dengan risiko populasi yang sangat besar.

Gambar 1.13. Perhitungan pemanasan global pada tahun 2001 dari beberapa model iklim berdasarkan scenario SRES A2, yang mengasumsikan tidak ada tindakan yang dilakukan untuk mengurangi emisi (Sumber:IPCC,2007)

Dengan memasukkan unsur-unsur ketidakpastian terhadap konsentrasi gas rumah kaca dan pemodelan iklim, IPCC memperkirakan pemanasan sekitar 1,1 °C - 6,4 °C (2,0 °F - 11,5 °F) antara tahun 1990 dan 2100 (IPCC, 2007). Model-model iklim juga digunakan untuk menyelidiki penyebab-penyebab perubahan iklim yang terjadi saat ini dengan membandingkan perubahan yang teramati dengan hasil prediksi model terhadap berbagai penyebab, baik alami maupun aktivitas manusia.
Model iklim saat ini menghasilkan kemiripan yang cukup baik dengan perubahan temperatur global hasil pengamatan selama seratus tahun terakhir, tetapi tidak mensimulasi semua aspek dari iklim. Model-model ini tidak secara pasti menyatakan bahwa pemanasan yang terjadi antara tahun 1910 hingga 1945 disebabkan oleh proses alami atau aktivitas manusia, akan tetapi mereka menunjukkan bahwa pemanasan sejak tahun 1975 didominasi oleh emisi gas-gas yang dihasilkan manusia.

Pengaruh awan juga merupakan salah satu sumber yang menimbulkan ketidakpastian terhadap model-model yang dihasilkan saat ini, walaupun sekarang telah ada kemajuan dalam menyelesaikan masalah ini. Saat ini juga terjadi diskusi-diskusi yang masih berlanjut mengenai apakah model-model iklim mengesampingkan efek-efek umpan balik dan tak langsung dari variasi Matahari.

3. Dampak pemanasan global

Para ilmuwan menggunakan model komputer dari temperatur, pola presipitasi, dan sirkulasi atmosfer untuk mempelajari pemanasan global. Berdasarkan model tersebut, para ilmuwan telah membuat beberapa prakiraan mengenai dampak pemanasan global terhadap cuaca, tinggi permukaan air laut, pantai, pertanian, kehidupan hewan liar dan kesehatan manusia. Para ilmuwan memperkirakan bahwa selama pemanasan

4. Peningkatan permukaan laut

Ketika atmosfer menghangat, lapisan permukaan lautan juga akan menghangat, sehingga volumenya akan membesar dan menaikkan tinggi
permukaan laut. Pemanasan juga akan mencairkan banyak es di kutub, terutama sekitar *Greenland*, yang lebih memperbanyak volume air di laut. Tinggi muka laut di seluruh dunia telah meningkat 10 - 25 cm (4 - 10 inch) selama abad ke-20, dan para ilmuwan IPCC memprediksi peningkatan lebih lanjut 9 - 88 cm (4 - 35 inch) pada abad ke-21.

![Gambar 1.14. Perubahan tinggi rata-rata muka laut diukur dari lingkungan yang stabil secara geologi.](image)

Perubahan tinggi muka laut akan sangat memengaruhi kehidupan di daerah pantai. Kenaikan 100 cm (40 inch) akan menenggelamkan 6% daerah Belanda, 17,5% daerah Bangladesh, dan banyak pulau-pulau. Erosi dari tebing, pantai, dan bukit pasir akan meningkat. Ketika tinggi lautan mencapai muara sungai, banjir akibat air pasang akan meningkat di daratan. Negara-negara kaya akan menghabiskan dana yang sangat besar untuk melindungi daerah pantainya, sedangkan negara-negara miskin mungkin hanya dapat melakukan evakuasi dari daerah pantai.

Bahkan sedikit kenaikan tinggi muka laut akan sangat memengaruhi ekosistem pantai. Kenaikan 50 cm (20 inch) akan menenggelamkan separuh dari rawa-rawa pantai di Amerika Serikat. Rawa-rawa baru juga akan terbentuk, tetapi tidak di area perkotaan dan daerah yang sudah dibangun. Kenaikan muka laut ini akan menutupi sebagian besar dari Florida Everglades. Orang mungkin beranggapan bahwa Bumi yang hangat akan menghasilkan lebih banyak makanan dari sebelumnya, tetapi

5. Gangguan Ekologis

Perubahan cuaca dan laut dapat mengakibatkan munculnya penyakit-penyakit yang berhubungan dengan panas (heat stroke) dan kematian. Temperatur yang panas juga dapat menyebabkan gagal panen sehingga akan muncul kelaparan dan malnutrisi. Perubahan cuaca yang ekstrem dan peningkatan permukaan air laut akibat mencairnya es di kutub utara dapat menyebabkan penyakit-penyakit yang berhubungan dengan bencana alam (banjir, badai dan kebakaran) dan kematian akibat trauma. Timbulnya bencana alam biasanya disertai dengan perpindahan penduduk ke tempat-tempat pengungsian di mana sering muncul penyakit, seperti: diare, malnutrisi, defisiensi mikronutrien, trauma psikologis, penyakit kulit, dan lain-lain.

6. Perdebatan Tentang Pemanasan Global

Para ilmuwan yang mempertanyakan pemanasan global cenderung menunjukkan tiga perbedaan yang masih dipertanyakan antara prediksi

permukaan Bumi tidak dapat diragukan lagi. Akan tetapi, pengukuran troposfer yang lebih rendah dari prediksi model tidak dapat dijelaskan secara jelas. Konsumsi total bahan bakar fosil di dunia meningkat sebesar 1% per-tahun. Langkah-langkah yang dilakukan atau yang sedang didiskusikan saat ini tidak ada yang dapat mencegah pemanasan global pada masa depan. Tantangan yang ada saat ini adalah mengatasi efek yang timbul sambil melakukan langkah-langkah untuk mencegah semakin berubahnya iklim pada masa depan.

7. Menghilangkan Karbon
 Cara yang paling mudah untuk menghilangkan karbon dioksida di udara adalah dengan memelihara pepohonan dan menanam pohon lebih banyak lagi. Pohon, terutama yang muda dan cepat pertumbuhannya, menyerap karbon dioksida yang sangat banyak, memecahnya melalui fotosintesis, dan menyimpan karbon dalam kayunya. Di seluruh dunia, tingkat perambahan hutan telah mencapai level yang mengkhawatirkan. Di banyak area, tanaman yang tumbuh kembali sedikit sekali karena tanah
kehilangan kesuburannya ketika diubah untuk kegunaan yang lain, seperti untuk lahan pertanian atau pembangunan rumah tinggal. Langkah untuk mengatasi hal ini adalah dengan penghutanan kembali yang berperan dalam mengurangi semakin bertambahnya gas rumah kaca.

Kerjasama internasional diperlukan untuk mensukseskan pengurangan gas-gas rumah kaca. Pada tahun 1992, pada Earth Summit di Rio de Janeiro, Brazil, 150 negara berikrar untuk menghadapi masalah
gas rumah kaca dan setuju untuk menterjemahkan maksud ini dalam suatu perjanjian yang mengikat. Pada tahun 1997 di Jepang, 160 negara merumuskan persetujuan yang lebih kuat yang dikenal dengan Protokol Kyoto.

Banyak orang mengkritik Protokol Kyoto terlalu lemah. Bahkan jika perjanjian ini dilaksanakan segera, ia hanya akan sedikit mengurangi bertambahnya konsentrasi gas-gas rumah kaca di atmosfer. Suatu tindakan yang keras akan diperlukan nanti, terutama karena negara-negara berkembang yang dikecualikan dari perjanjian ini akan

Pada suatu negara dengan kebijakan lingkungan yang ketat, ekonominya dapat terus tumbuh walaupun berbagai macam polusi telah dikurangi. Akan tetapi membatasi emisi karbon dioksida terbukti sulit dilakukan. Sebagai contoh, Belanda, negara industrialis besar yang juga pelopor lingkungan, telah berhasil mengatasi berbagai macam polusi tetapi gagal untuk memenuhi targetnya dalam mengurangi produksi karbon dioksida.

dari 5 % di bawah tingkat 1990, ia berada dalam posisi untuk menjual kredit emisi ke negara-negara industri lainnya, terutama mereka yang ada di Uni Eropa.

1.6. Siklus Karbon

Bagian terbesar dari karbon yang berada di atmosfer Bumi adalah gas karbon dioksida (CO$_2$). Meskipun jumlah gas ini merupakan bagian yang sangat kecil dari seluruh gas yang ada di atmosfer (hanya sekitar 0,04% dalam basis molar, meskipun sedang mengalami kenaikan), namun ia memiliki peran yang penting dalam menyokong kehidupan. Gas-gas lain yang mengandung karbon di atmosfer adalah metan dan kloroflorokarbon atau CFC (CFC ini merupakan gas artificial atau buatan).

Gambar 1.15. Diagram dari siklus karbon (Sumber: Wikipedia)

Karbon diambil dari atmosfer dengan berbagai cara:
- Ketika matahari bersinar, tumbuhan melakukan fotosintesa untuk mengubah karbon dioksida menjadi karbohidrat, dan melepaskan oksigen ke atmosfer. Proses ini akan lebih banyak menyerap karbon pada hutan dengan tumbuhan yang baru saja tumbuh atau hutan yang sedang mengalami pertumbuhan yang cepat.
- Pada permukaan laut ke arah kutub, air laut menjadi lebih dingin dan CO₂ akan lebih mudah larut. Selanjutnya CO₂ yang larut tersebut akan terbawa oleh sirkulasi termohalin yang membawa massa air di permukaan yang lebih berat ke kedalaman laut atau interior laut (lihat bagian solubility pump).
- Di laut bagian atas (upper ocean), pada daerah dengan produktivitas yang tinggi, organisme membentuk jaringan yang mengandung karbon, beberapa organisme juga membentuk cangkang karbonat dan bagian-bagian tubuh lainnya yang keras. Proses ini akan menyebabkan aliran karbon ke bawah (lihat bagian biological pump).
- Pelapukan batuan silikat. Tidak seperti dua proses sebelumnya, proses ini tidak memindahkan karbon ke dalam reservoir yang siap untuk kembali ke atmosfer. Pelapukan batuan karbonat tidak memiliki efek netto terhadap CO₂ atmosferik karena ion bikarbonat yang terbentuk terbawa ke laut dimana selanjutnya dipakai untuk membuat karbonat laut dengan reaksi yang sebaliknya (reverse reaction).

Karbon dapat kembali ke atmosfer dengan berbagai cara pula, yaitu:
- Melalui pernapasan (respirasi) oleh tumbuhan dan binatang. Hal ini merupakan reaksi eksotermik dan termasuk juga di dalamnya penguraian glukosa (atau molekul organik lainnya) menjadi karbon dioksida dan air.
- Melalui pembusukan binatang dan tumbuhan. Fungi atau jamur dan bakteri mengurai senyawa karbon pada binatang dan tumbuhan yang mati dan mengubah karbon menjadi karbon dioksida jika tersedia oksigen, atau menjadi metana jika tidak tersedia oksigen.
- Melalui pembakaran material organik yang mengoksidasi karbon yang terkandung menghasilkan karbon dioksida (juga yang lainnya seperti asap). Pembakaran bahan bakar fosil seperti batu bara, produk dari industri perminyakan (petroleum), dan gas alam akan melepaskan karbon yang sudah tersimpan selama jutaan tahun di dalam geosfer. Hal inilah yang merupakan penyebab utama naiknya jumlah karbon dioksida di atmosfer.
- Produksi semen. Salah satu komponennya, yaitu kapur atau gamping atau kalsium oksida, dihasilkan dengan cara memanaskan batu kapur atau batu gamping yang akan menghasilkan juga karbon dioksida dalam jumlah yang banyak.
- Di permukaan laut dimana air menjadi lebih hangat, karbon dioksida terlarut dilepas kembali ke atmosfer.
- Erupsi vulkanik atau ledakan gunung berapi akan melepaskan gas ke atmosfer. Gas-gas tersebut termasuk uap air, karbon dioksida, dan beberap. Jumlah karbon dioksida yang dilepas ke atmosfer secara kasar hampir sama dengan jumlah karbon dioksida yang hilang dari atmosfer akibat pelapukan silikat; Kedua proses kimia ini yang saling berkebalikan ini akan memberikan hasil penjumlahan yang sama dengan nol dan tidak berpengaruh terhadap jumlah karbon dioksida di atmosfer dalam skala waktu yang kurang dari 100.000 tahun.

1. Karbon di biosfer
 Sekitar 1900 gigaton karbon ada di dalam biosfer. Karbon adalah bagian yang penting dalam kehidupan di Bumi. Ia memiliki peran yang
penting dalam struktur, biokimia, dan nutrisi pada semua sel makhluk hidup. Dan kehidupan memiliki peran yang penting dalam siklus karbon:

- **Autotroph** adalah organisme yang menghasilkan senyawa organiknya sendiri dengan menggunakan karbon dioksida yang berasal dari udara dan air di sekitar tempat mereka hidup. Untuk menghasilkan senyawa organik tersebut mereka membutuhkan sumber energi dari luar. Hampir sebagian besar **autotroph** menggunakan radiasi matahari untuk memenuhi kebutuhan energi tersebut, dan proses produksi ini disebut sebagai fotosintesis. Sebagian kecil **autotroph** memanfaatkan sumber energi kimia, dan disebut kemosintesis. **Autotroph** yang terpenting dalam siklus karbon adalah pohon-pohonan di hutan dan daratan dan fitoplankton di laut. Fotosintesis memiliki reaksi $6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$

- Karbon dipindahkan di dalam biosfer sebagai makanan heterotrop pada organisme lain atau bagianannya (seperti buah-buahan). Termasuk di dalamnya pemanfaatan material organik yang mati (**detritus**) oleh jamur dan bakteri untuk fermentasi atau penguraian.

- Sebagian besar karbon meninggalkan biosfer melalui pernapasan atau respirasi. Ketika tersedia oksigen, respirasi aerobik terjadi, yang melepaskan karbon dioksida ke udara atau air di sekitarnya dengan reaksi $\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}$. Pada keadaan tanpa oksigen, respirasi anaerobiklah yang terjadi, yang melepaskan metan ke lingkungan sekitarnya yang akhirnya berpindah ke atmosfer atau hidrosfer.

- Pembakaran biomassa (seperti kebakaran hutan, kayu yang digunakan untuk tungku penghangat atau kayu bakar, dll.) dapat juga memindahkan karbon ke atmosfer dalam jumlah yang banyak.

- Karbon juga dapat berpindah dari biosfer ketika bahan organik yang mati menyebar dengan geosfer (seperti gambut). Cangkang binatang dari kalsium karbonat yang menjadi batu gamping melalui proses sedimentasi.

- Sisanya, yaitu siklus karbon di laut dalam, masih dipelajari. Sebagai contoh, penemuan terbaru bahwa rumah **larvacean mucus** (biasa
dikenal sebagai "sinkers") dibuat dalam jumlah besar yang mana mampu membawa banyak karbon ke laut dalam seperti yang terdeteksi oleh perangkap sedimen. Karena ukuran dan komposisinya, rumah ini jarang terbawa dalam perangkap sedimen, sehingga sebagian besar analisis biokimia melakukan kesalahan dengan mengabaikannya.

Penyimpanan karbon di biosfer dipengaruhi oleh sejumlah proses dalam skala waktu yang berbeda: sementara produktivitas primer netto mengikuti siklus harian dan musiman, karbon dapat disimpan hingga beberapa ratus tahun dalam pohon dan hingga ribuan tahun dalam tanah. Perubahan jangka panjang pada kolam karbon (misalnya melalui de- atau afforestation) atau melalui perubahan temperatur yang berhubungan dengan respirasi tanah) akan secara langsung memengaruhi pemanasan global.

2. Karbon di laut

Laut mengandung sekitar 36.000 gigaton karbon, dimana sebagian besar dalam bentuk ion bikarbonat. Karbon anorganik, yaitu senyawa karbon tanpa ikatan karbon-karbon atau karbon-hidrogen, adalah penting dalam reaksinya di dalam air. Pertukaran karbon ini menjadi penting dalam mengontrol pH di laut dan juga dapat berubah sebagai sumber (source) atau lubuk (sink) karbon. Karbon siap untuk saling dipertukarkan antara atmosfer dan lautan. Pada daerah upwelling, karbon dilepaskan ke atmosfer. Sebaliknya, pada daerah downwelling karbon (CO₂) berpindah dari atmosfer ke lautan. Pada saat CO₂ memasuki lautan, asam karbonat terbentuk:

\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \]

Reaksi ini memiliki sifat dua arah, mencapai sebuah kesetimbangan kimia. Reaksi lainnya yang penting dalam mengontrol nilai pH lautan adalah pelepasan ion hidrogen dan bikarbonat. Reaksi ini mengontrol perubahan yang besar pada pH:

\[\text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \]
BAB 2
GAS RUMAH KACA DI INDONESIA

2.1 Deskripsi Gas Rumah Kaca

Emisi gas rumah kaca Indonesia diperkirakan akan tumbuh 2% per tahun dan mencapai 2.80 miliar ton CO\textsubscript{2} ekuivalen (CO\textsubscript{2}e) pada 2020 dan 3.60 miliar ton CO\textsubscript{2} ekuivalen (CO\textsubscript{2}e) pada 2030. Sumber utama dari kenaikan emisi GRK tersebut berasal dari pembangkit listrik, transportasi, dan lahan gambut. Deforestasi lahan gambut maupun lahan non-gambut menyumbang 80% dari emisi GRK di Indonesia. Peningkatan industrialisasi juga menyebabkan naiknya konsumsi energi primer terkait penggunaan bahan bakar fosil yang menjadi sumber utama pasokan energi. Dan penggunaan ini telah membawa dampak negatif bagi lingkungan. Pencemaran udara di kota-kota Indonesia diperparah oleh emisi gas buang, penggunaan bahan bakar berkualitas rendah pada kendaraan bermotor, serta lemahnya penegakan hukum. Langkah penting berikutnya untuk membuat kemajuan nyata dalam upaya mencapai target penurunan emisi adalah membangun komitmen untuk mengembangkan teknologi rendah emisi dan implementasi proyek-proyek penurunan emisi GRK.

Pemerintah Indonesia pada 2009 memutuskan untuk menetapkan target penurunan emisi karbon sebesar 26,0 % pada 2020. Penurunan emisi karbon tersebut diharapkan dapat dicapai melalui penggunaan energi campuran dan terbarukan, termasuk energi panas bumi (geothermal), alih fungsi hutan (LULUCF/Land Use, Land Use Change and Forestry) dan manajemen penggunaan lahan gambut.

Tahun 2010, pemerintah juga telah mengalokasikan dana sebesar US$212,70 juta setiap tahun untuk mendanai program reforestasi Reducing

Sebagai tindak lanjut pertemuan G-20 dan COP-15 UNFCCC tadi maka diterbitkan Keppres No.61/Th.2011 Tentang Rencana Aksi Nasional Penurunan Gas Rumah Kaca (RAN-GRK). Disitu jelas dijabarkan target penurunan GRK, sebesar 0,767 Giga Ton Karbon, atau 26% pada Tahun 2020, dan total sebesar sebesar 1,189 Giga Ton Karbon, atau 41%, dengan dukungan Internasional.

Khusus untuk pengukuran serapan karbon di terumbu karang, hutan mangroves, rumput laut dan padang lamun, segera dirintis kerjasama

Emisi gas rumah kaca (GRK) Indonesia mencapai 2,1 miliar ton karbon dioksida di tahun 2005, kondisi tersebut menawarkan kesempatan untuk mengurangi emisi secara substansial melalui konservasi hutan, pengurangan penggunaan api, perlindungan lahan gambut, dan manajemen hutan yang lebih baik. Hasil analisa emisi gas rumah kaca saat ini dan potensi pengurangan di delapan sektor: gambut, kehutanan, pertanian, tenaga, transportasi, minyak dan gas, semen dan bangunan menemukan bahwa 85% emisi negara merupakan hasil dari penggunaan lahan: 41% dari degradasi dan perusakan lahan gambut, sementara 37% hasil dari penggundulan hutan (saat ini 800.000 hektar per tahun), degradasi melalui penebangan (1 juta hektar), dan kebakaran hutan. Diperkirakan emisi Indonesia akan mencapai 2,5 miliar ton CO₂ pada tahun 2020 dan 3,3 miliar ton pada tahun 2030 dengan tingkat pertumbuhan saat ini. Namun menggunakan kurva penurunan gas rumah kaca yang dikembangkan oleh McKinsey & Co, terdapat beberapa pilihan untuk memotong perkiraan emisi secara signifikan dengan biaya rendah. Lima peristiwa terbesar adalah mencegah penggundulan hutan (570 juta metrik ton di tahun 2030), mencegah kebakaran lahan gambut (310 m ton), mengelola dan memperbaiki lahan gambut (250 m ton), mengimplementasikan dan menegakkan manajemen hutan yang berkesinambungan (sustainable forest management / SFM) (240 m ton), dan menghutankan kembali hutan-hutan tertengkalai dan terdegradasi.
(150 m ton). Secara keseluruhan, penganalisa menyimpulkan bahwa manajemen lahan yang lebih baik dapat memotong emisi hingga 1,9 miliar ton pada tahun 2030, atau lebih dari emisi industri India saat ini.

Memotong emisi akan berkontribusi pada pertumbuhan ekonomi jangka panjang yang relatif dengan pendekatan konvensional. Sebagai contoh, kebakaran gambut membuat negara rugi hingga USD 4 miliar per tahun karena kehilangan material, logistik yang terlambat, dan masalah kesehatan. Profil emisi GRK Indonesia unik karena sangat didominasi oleh emisi dari hutan dan lahan gambut di mana penggunaan lahan yang lebih efisien meningkatkan nilai ekonomi dan mengurangi emisi GRK. Menghentikan penggunaan api sebagai alat untuk pembukaan lahan, meningkatkan praktek penebangan sampai kayu yang tertinggal untuk membusuk dan menjadi limbah sesedikit mungkin, penghutanan kembali wilayah yang terdegradasi merupakan beberapa contoh dari inisiatif mitigasi GRK yang berdampak tinggi dalam strategi pertumbuhan ramah lingkungan.

Prinsip yang menjadi pemikiran adalah bahwa nilai ekonomi jangka panjang jelas mengalahkan manfaat dari meneruskan aktivitas yang tak berkesinambungan dan menghasilkan emisi GRK tinggi. Contohnya peristiwa di Kalimantan Timur yang mengalami pengubahan fungsi besar-besaran dari lahan gambut dan hutan untuk produksi kayu dan perkebunan. Propinsi tersebut dapat meningkatkan pertumbuhan GDP-nya dari tingkat biasa yaitu 3% per tahun ke 5% tanpa meningkatkan emisi dengan berpindah ke aktivitas yang bernilai lebih tinggi dan mempromosikan sektor intensif karbon rendah. Sehingga dalam sebuah masyarakat ekonomi yang sedang berkembang seperti Indonesia, masyarakat tidak akan memilih kondisi tersebut untuk mengurangi emisi GRK jika kondisi tersebut memperlambat pertumbuhan ekonomi.

Protokol Kyoto mengatur enam jenis gas-gas rumah kaca, yaitu karbon dioksida (CO₂), metana (CH₄), nitrogen oksida (N₂O), dan tiga gas-

gas isolator pada jaringan listrik tegangan tinggi. Walaupun jumlahnya di atmosfer amat sangat sedikit, tetapi GWP dari HFC, PFC, dan SF6 adalah yang paling tinggi, berturut-turut 7,000, 12,200, dan 22,000.

2.2 Pencemaran Udara

Umumnya proses pembakaran bahan bakar tersebut akan merubah material yang ada di dalamnya selain menjadi energi juga adanya sisa pembakaran seperti partikulat (debu) dan gas buang lainnya. Bahan pencemar dari proses pembakaran tersebut akan diemisikan kedalam atmosfer. Kenaikan bahan pencemar sisa pembakaran ataupun bahan-bahan kimia seperti partikulat dan gas buang lainnya akan dapat menimbulkan terjadinya pencemaran udara. Berdasarkan Peraturan Pemerintah RI No. 41 tahun 1999 mengenai Pengendalian Pencemaran Udar, yang dimaksud dengan pencemaran udara adalah masuknya atau dimasukkannya zat, energi, dan/atau komponen lain ke dalam udara ambien oleh kegiatan manusia, sehingga mutu udara ambien turun sampai ke tingkat tertentu yang menyebabkan udara ambien tidak dapat memenuhi fungsinya. Udara ataupun atmosfer sebagai tempat penampungan akhir dari emisi bahan-bahan pencemar mempunyai kemampuan untuk menetralisasi secara alamiah seperti proses pencucian polutan oleh hujan, proses pengenceran melalui sebaran polutan akibat faktor-faktor meteorologi seperti pergerakan angin, stabilitas atmosfer dan lain sebagainya. Namun, akibat dari kenaikan emisi bahan-bahan polusi udara yang masuk ke atmosfer semakin meningkat, maka kemampuan atmosfer untuk proses netralisasi semakin menurun, akibatnya kemungkinan terjadinya pencemaran udara semakin tinggi.
Beberapa faktor yang memberikan kontribusi peningkatan emisi zat pencemar di udara antara lain adalah pertumbuhan penduduk dengan segala aktifitasnya, peningkatan pemakaian energi, peningkatan status sosial atau perubahan gaya hidup dan minimnya peraturan-peraturan yang ada dan ataupun kurangnya kesadaran terhadap ketaatan peraturan-peraturan yang sudah ada serta lemahnya pengawasan di lapangan. Besarnya tingkat kadar pencemaran di udara tersebut umumnya sangat dipengaruhi oleh (1) jumlah atau total bahan pencemar yang diemisikan atau dipancarkan ke atmosfer, (2) kondisi meteorologi seperti arah dan kecepatan angin, suhu, kelembapan udara dan hujan, (3) keadaan topografi seperti daerah terbuka atau datar, daerah lembah maupun daerah perbukitan atau gunung, (4) bentuk susunan sumber yaitu sumber-sumber pencemar dengan ketinggian cerobong emisi. Semakin tinggi cerobong emisi yang digunakan maka umumnya akan semakin jauh distribusi sebaran polutan di atmosfer. Berdasarkan distribusi ruang maka sumber emisi zat pencemar udara dapat dikelompokkan menjadi 3 (tiga) yaitu:

a. Sumber titik (point sources) misalnya cerobong pabrik.
b. Sumber garis (line sources) misalnya emisi dari kendaraan bermotor.
c. Sumber area (area sources) misalnya area pertambangan dan daerah permukiman.

2.3 Sumber Pencemar Udara

Telah disadari bersama, kualitas udara saat ini telah menjadi persoalan global, karena udara telah tercemar akibat aktivitas manusia dan proses alam. Masuknya zat pencemar ke dalam udara dapat secara alamiah, misalnya asap kebakaran hutan, akibat gunung berapi, debu meteorit dan pancaran garam dari laut; juga sebagian besar disebabkan oleh kegiatan manusia, misalnya akibat aktivitas transportasi, industri, pembuangan sampah, baik akibat proses dekomposisi ataupun pembakaran serta kegiatan rumah tangga.
Terdapat 2 jenis pencemar yaitu sebagai berikut:

a. Zat pencemar primer, yaitu zat kimia yang langsung mengkontaminasi udara dalam konsentrasi yang membahayakan. Zat tersebut berasal dari komponen udara alamiah seperti karbon dioksida, yang meningkat di atas konsentrasi normal, atau sesuatu yang tidak biasanya, ditemukan dalam udara, misalnya timbal.

b. Zat pencemar sekunder, yaitu zat kimia berbahaya yang terbentuk di atmosfer melalui reaksi kimia antar komponen-komponen udara.

Sumber bahan pencemar primer dapat dibagi lagi menjadi dua golongan besar:

1. Sumber alamiah
 Beberapa kegiatan alam yang bisa menyebabkan pencemaran udara adalah kegiatan gunung berapi, kebakaran hutan, kegiatan mikroorganisme, dan lain-lain. Bahan pencemar yang dihasilkan umumnya adalah asap, gas-gas, dan debu.

2. Sumber buatan manusia
 Kegiatan manusia yang menghasilkan bahan-bahan pencemar bermacam-macam antara lain adalah kegiatan-kegiatan berikut:
 a. Pembakaran, seperti pembakaran sampah, pembakaran pada kegiatan rumah tangga, industri, kendaraan bermotor, dan lain-lain. Bahan-bahan pencemar yang dihasilkan antara lain asap, debu, grit (pasir halus), dan gas (CO dan NO).
 b. Proses peleburan, seperti proses peleburan baja, pembuatan soda, semen, keramik, aspal. Sedangkan bahan pencemar yang dihasilkannya antara lain adalah debu, uap, dan gas-gas.
 d. Proses pengolahan dan pemanasan seperti pada proses pengolahan makanan, daging, ikan, dan penyamakan. Bahan pencemar yang dihasilkan terutama asap, debu, dan bau.
 e. Pembuangan limbah, baik limbah industri maupun limbah rumah tangga. Pencemarannya terutama adalah dari instalasi pengolahan
air buangannya. Sedangkan bahan pencemarnya terutama adalah gas H₂S yang menimbulkan bau busuk.

f. Proses kimia, seperti pada proses fertilisasi, proses pemurnian minyak bumi, proses pengolahan mineral, pembuatan keris, dan lain-lain. Bahan-bahan pencemar yang dihasilkan antara lain adalah debu, uap dan gas-gas

g. Proses pembangunan seperti pembangunan gedung-gedung, jalan dan kegiatan yang semacamnya. Bahan pencemarnya yang terutama adalah asap dan debu.

Menurut *Environmental News Network* menyimpulkan bahwa budidaya padi adalah satu di antara penyebab utama peningkatan emisi metana-salah satu gas rumah kaca yang 21 kali lebih berpotensi menyebabkan efek rumah kaca dibandingkan karbon dioksida yang menyebabkan kerusakan ozon dan kenaikan suhu. Untuk mereduksi emisi gas ini, salah satu yang dilakukan oleh *International Rice Research Institute* (IRRI) adalah pada tahap awalnya memperbaiki varietas padi yang tahan terhadap panas dan kemungkinan akan menghasilkan padi yang tidak begitu besar mengeluarkan emisi gas rumah kaca. Tapi masalah lain yang ditimbulkan oleh varietas padi yang dihasilkan dari tumbuhan transgenik (tanaman hasil penyilangan dari varietas unggul dan merupakan sebuah rekayasa genetika) ini adalah efek buruk terhadap ketergantungan petani untuk mendapatkan benih padi, insektisida, dan pupuk dari industri pertanian yang cukup besar tanpa bisa menjadi mandiri.

Sementara itu di Thailand, sosialisasi efek *global warming* terhadap petani adalah dampak buruk pembakaran sisa tanaman yang akan menghasilkan karbon dioksida dan pengairan yang berlebihan akan menghasilkan gas metana. Sedangkan di Indonesia, *global warming* ini masih menjadi sebatas wacana ilmiah di antara kaum intelektual yang sangat terbatas dan belum dipahami secara menyeluruh kepada seluruh penduduk Indonesia dan terutama kepada petani, sehingga belum ada antisipasi yang meyeluruh dan koordinasi yang baik untuk mereduksi efek *global warming*.

Metana juga dihasilkan oleh sampah. Diperkirakan 1 ton sampah padat akan menghasilkan 50 kg gas metana. Pada tahun 2020 diprediksi sampah di Indonesia mencapai 500 juta kg perhari atau 190 ribu ton per tahun, sehingga kemungkinan besar akan mengemisikan gas metana sebesar 9500 ton per tahun. Sampah-sampah ini sebenarnya bisa dijadikan listrik dengan pembangkit listrik tenaga sampah (PLTSa) seperti yang saat ini sedang dirancang di Bandung. Tapi sayang pembangkit listrik semacam ini memakan biaya yang cukup besar, tapi hanya mampu
menghasilkan kapasitas listrik yang terbatas. Belum lagi pencemaran dari zat dioksin yang berbahaya bagi manusia.
BAB 3
PERUBAHAN IKLIM

3.1 Sejarah Perubahan Iklim

Pemanasan global beserta dampak yang menyertainya yaitu perubahan iklim telah nyata dihadapan kita. Berdasarkan data yang dikeluarkan oleh panel antar pemerintah mengenai perubahan iklim (Intergovernmental Panel on Climate Change/IPCC) 2007 telah ditemui bukti-bukti nyata pada skala global maupun lokal. Hasil dari berbagai temuan tersebut telah menjadi dasar bagi pembuatan strategi dan skenario perubahan iklim beserta dampak yang ditimbulkan pada skala lokal maupun nasional pada negara dan wilayah masing-masing.

Basis dari pengetahuan iklim masa mendatang didapat dari hasil pemodelan iklim global yang dibuat berdasarkan beberapa skenario perubahan iklim versi IPCC. Untuk kepentingan kajian dan analisa sektoral akan dampak perubahan iklim lokal perlu dilakukan downscaling atau nesting dengan memakai model iklim regional (metoda downscaling dinamis) pada hasil pemodelan global tersebut. Salah satu kesulitan kondisi lokal adalah banyaknya pulau pulau kecil yang tidak dapat dipenuhi oleh model iklim global, sehingga diperlukan penurunan skala (downscaling) untuk skala yang lebih lokal yang representatif. Hingga saat ini belum ada kajian skenario iklim mendatang yang sangat berguna untuk analisa kerentanan di masing-masing sektor. Karena banyaknya data untuk pemodelan dan perlu dilakukan pekerjaan simulasi secara paralel dan masif maka diperlukan kemampuan kapasitas komputasi yang sangat tinggi untuk melakukan kajian tersebut.

Pemikiran tentang pemanasan global telah ada sejak dulu, tetapi
tindakan nyata untuk mengantisipasinya baru dilakukan dalam beberapa tahun terakhir.
- Rumah kaca merupakan budaya dari tuan tanah kaya Italia untuk membudidayakan sayuran dan tanaman dengan membentuk cuaca mikro. Sehingga tanaman yang tidak bisa tumbuh pada musim dingin bisa tumbuh dan menghasilkan, dengan menanamnya di rumah kaca.
- Edme mariotte (1681) memperkenalkan sifat matahari dan dalam penelitiannya dia mengemukakan bahwa energi sinar dan panas matahari mampu menembus gelas dan materi transparan lainnya sedang sumber lain tidak.
- Horace Benedict de Saussure (1760) menciptakan alat heliothermometer untuk menunjukan bahwa udara mampu menyimpan panas radiasi matahari dan sekarang disebut Efek Rumah Kaca.
- Jean-Baptise Joseph Forier, fisikawan-matematikawan Perancis
 1. Mengenalkan istilah rumah kaca 1824
 2. Suhu hangat terjadi karena sebagian panas sinar matahari terjebak di dalam dan tak bisa keluar karena terhalang dinding dan atap kaca
 3. Unsur gas yang paling penting CO₂
 4. CO₂ mengontrol suhu atmosfer bumi
- Svante Arrhenius (1894) menyatakan:
 1. CO₂ unsur terpenting yang mengontrol suhu atmosfer
 2. Kadar CO₂ di batuan es yang berasal dari zaman es memiliki 50 % lebih sedikit dibanding di batuan es zamannya.
 3. Kenaikan suhu atmosfer beriringan dengan naiknya konsentrasi CO₂
 4. Mencairnya gunung-gunung es terjadi karena penambahan konsentrasi CO₂ di angkasa
Gambar 3.2. (a) Kondisi Gunung Kalimanjaro di Afrika pada tahun 1970 dan tahun 2000 dengan perubahan mencolok pada tutupan esnya (b) Kondisi tutupan salju di Amerika sekitar 50 tahun yang lalu dan kondisi sekarang (c) Kontribusi negara/kawasan pada global warming, terlihat Amerika Serikat penyumbang terbesar tetapi Amerika Serikat menolak menyetujui Protokol Kyoto (d) Peningkatan populasi nyamuk serta perluasan area yang dijangkuti akibat temperatur gunung yang makin menghangat kearah puncak, sehingga habitat nyambuk bertambah luas ke arah puncak gunung (e) Menunjukkan emisi karbon yang dikeluarkan tiap negara dan Amerika Serikat masih menduduki peringkat pertama (Sumber :An Inconvenient Truth)

Indonesia sendiri telah mencanangkan suatu gerakan nasional menghadapi perubahan iklim yang tercakup dalam dokumen Rencana Aksi Nasional Menghadapi Perubahan Iklim (RAN MAPI) yang dikeluarkan oleh Kementerian Lingkungan Hidup (KLH) tahun 2007. Dokumen
tersebut berisikan strategi umum yang didasarkan pada data yang telah ditemukan di lapangan dan merupakan bukti akan terjadinya perubahan iklim di Indonesia. Berdasarkan hal tersebut telah dibuat strategi yang lebih detail pada sektor rencana aksi mendatang pada jangka pendek dan menengah.

Salah satu hambatan yang sangat nyata dari penyusunan rencana aksi pada tiap sektor tersebut adalah ketiadaan informasi iklim jangka panjang pada saat lampau kini dan mendatang. Untuk kebutuhan perencanaan ke depan maka informasi perubahan iklim masa yang akan datang jadi lebih penting ketimbang perubahan yang telah dan sedang terjadi. Salah satu pendekatan yang dapat dipakai untuk memahami dan mengerti perubahan iklim mendatang adalah dengan memakai hasil pemodelan iklim mendatang yang telah dilakukan secara global dan melihat pola perubahan yang terjadi pada skala lokal. Pendekatan ini didasari oleh hasil pemodelan global yang telah dibuat oleh berbagai skenario perubahan iklim masa mendatang yang telah ditetapkan oleh IPCC. Meski hasil perubahan iklim skenario IPCC tersebut telah dilakukan oleh beberapa pusat penelitian iklim dunia, perlu juga dilakukan upaya pendekatan pada skala lokal untuk dapat dipakai pada skala yang diinginkan oleh pemangku kebijakan (stakeholder) di masing-masing sektor terkait. Beberapa metoda pendekatan seperti:

- Memakai hasil pemodelan iklim global yang memiliki resolusi sangat tinggi yang memadai untuk dilakukan interpretasi bagi sektor terkait.
- Memakai hasil pemodelan iklim global dan kemudian dilakukan downscaling secara dinamis yang dalam pengertian dilakukan proses zooming dinamika pada skala lokal memakai data hasil pemodelan iklim global. Skala pemodelan dinamis lokal memakai resolusi yang dapat dipakai untuk interpretasi sektor terkait.
- Memakai hasil pemodelan iklim global dan kemudian dilakukan downscaling secara statis yang dapat dipakai untuk interpretasi skala lokal yang memadai bagi keperluan sektor terkait.
3.2 Istilah Dalam Perubahan Iklim

1. Sistem iklim
 Sistem iklim adalah sistem yang membentuk iklim dan terjadi proses dan saling mempengaruhi yang terdiri dari lima komponen utama:
 - Atmosfer
 - Hidrosfer
 - Kriosfer
 - Permukaan tanah (pedosfer)
 - Biosfer

 Sistem iklim merupakan sistem kompleks yang terdiri dari lima komponen utama: atmosfer, hidrosfer, kriosfer, daratan, biosfer, dan interaksi di antara komponen-komponen tersebut. Sistem iklim meningkat dalam waktu dan terpengaruh oleh dinamika internal dan gaya luar seperti letusan gunung api, variasi matahari, dan pengaruh anthropogenic (misalnya: perubahan komposisi atmosfer dan perubahan lahan).

2. Model iklim
Model iklim dapat dibagi lagi berdasarkan:
- Struktur modelnya: model sederhana, model tingkat menengah, dan model kompleks.
- Teknik komputasinya: model spektral dan model grid.
- Cakupan wilayah: model iklim global, regional, meso dan mikro.
- Tipe kajian: model daratan, model atmosfer, model lautan, dan model kopel (gabungan diantara ketiga model).

3. Pemodelan Iklim
 Merupakan proses memodelkan/mensimulasikan iklim. Proses ini memerlukan seperangkat hardware (super komputer) dan software (software model iklim dan software pendukung lainnya). Contoh model iklim diantaranya: REMO, WRF, LAM, DARLAM, GCM, CSIRO, AVN, MM5, OMEGA, MC2, BLFMO, FITNAH, COAMPS, Eta Model, RAMS, ARPS, TVM, HOTMAC. Sedangkan software pendukung biasanya berupa software untuk memvisualisasikan hasil model seperti GrADS, Ferret, Matlab, IDL, dan NCL.

4. Perubahan Iklim
 Proses berubahnya iklim hal ini terjadi akibat pengaruh dari komponen iklim. Pengaruh dari komponen iklim bisa berupa bertambah kuat atau lemahnya pengaruh dari masing-masing komponen iklim tersebut. Proses perubahan ini memerlukan rentang waktu dari jutaan tahun hingga puluhan tahun. Dan proses ini terjadi dalam skala ruang yang luas (ukuran benua) hingga skala meso (ukuran kabupaten). Perubahan iklim ini berasal dari ekternal (berasal dari luar sistem iklim seperti perubahan banyaknya radiasi matahari yang mencapai puncak atmosfer dan perubahan distribusi daratan dan lautan) dan internal (berasal dari dalam sistem seperti pertambahan CO$_2$ di atmosfer).

5. Klasifikasi iklim
 Pembagian atau pengelompokan iklim yang terjadi di suatu tempat berdasarkan unsur iklim yang paling dominan dan hal tersebut
membedakannya dengan iklim tempat lain. Terdapat dua cara utama dalam klasifikasi iklim, yaitu:

a. Genetik, berdasarkan penentu iklim yaitu faktor yang menentukan dan menyebabkan iklim berbeda, seperti: radiasi, fluks kelembapan, neraca energi, pola radiasi)

6. Prediksi iklim

7. Proyeksi Iklim

Merupakan representasi kondisi iklim masa datang berdasarkan skenario iklim yang digunakan. Hasilnya bergantung pada berbagai skenario yang digunakan dengan melibatkan aspek ekonomi, sosial, budaya, politik (kebijakan pemerintah), dan teknologi di masa mendatang yang mungkin atau tidak bisa direalisasikan. Contohnya apa yang dihasilkan oleh IPCC dalam memproyeksikan kenaikan suhu global berdasarkan skenario yang berbeda. Proyeksi dari potensi masa datang berdasarkan penalaran yang jelas dan storyline yang terkuantisasi. Suatu skenario adalah koheren, konsisten secara internal dan kemungkinan

8. Range Skenario

Range skenario dapat digunakan untuk mengidentifikasi sensitifitas suatu parameter dalam perubahan iklim dan untuk membantu pengambil kebijakan dalam memutuskan suatu respon.

Range skenario ini penting untuk menunjukkan bahwa skenario iklim bukanlah prediksi. Skenario iklim menghasilkan indikasi logis dari apa yang akan terjadi pada satu dekade atau satu abad berdasarkan sekumpulan asumsi yang spesifik.

9. Simulasi Iklim

Representasi proses iklim dengan cara meniru proses iklim yang terjadi sebenarnya. Proses simulasi iklim saat ini dilakukan dengan menggunakan superkomputer untuk menghemat waktu perhitungan

10. Skenario Iklim

Representasi berbagai kemungkinan iklim yang akan datang berdasarkan berbagai input yang berbeda-beda. Representasi ini
dilakukan dengan melakukan simulasi iklim. Contohnya, skenario iklim yang dilakukan oleh IPCC tentang perubahan temperatur berkaitan dengan adanya perbedaan emisi GHG. Skenario ini penting untuk mengetahui langkah antisipasi yang harus dilakukan oleh masyarakat dunia. Jelas dengan kondisi tersebut pengurangan emisi 1% per tahun dari negara maju menunjukan perbedaan yang signifikan jika dibandingkan dengan skenario lainnya.

Representasi sederhana dan logis tentang keadaan iklim masa depan, berdasarkan hubungan yang konsisten dari parameter klimatologi yang dibangun secara ekplisit digunakan dalam investigasi untuk konsekuensi potensial dari perubahan iklim antropogenik, yang sering sebagai masukan (input) untuk model. Proyeksi iklim sering digunakan untuk bahan dasar pembuatan skenario iklim, tetapi skenario iklim biasanya memerlukan tambahan informasi seperti pengamatan iklim.

Skenario iklim merupakan salah satu cara untuk mengetahui proyeksi iklim kedepan dengan mempertimbangkan berbagai hal yang memengaruhi kondisi iklim. PBB membentuk badan khusus untuk kajian iklim bernama IPCC. IPCC telah melakukan beberapa skenario iklim untuk mengetahui proyeksi iklim global dan regional sampai 2100. Proyeksi iklim ini diperlukan untuk mengetahui kondisi iklim di masa yang akan datang berdasarkan skenario iklim yang ditetapkan. Proyeksi iklim ini berkaitan erat dengan perubahan iklim (climate change). Secara umum, suatu proyeksi dilakukan untuk tiap deskripsi masa datang dan pencapaianannya. Interpretasi yang lebih jelas bisa dilihat ketika digunakan dalam terminologi proyeksi iklim yang digunakan oleh IPCC, ketika berbicara tentang model yang mengestimasi iklim masa depan.

Sedangkan definisi perubahan iklim atau Climate change menurut IPCC adalah

 a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or the variability of its
properties, and that persists for an extended period, typically decades or longer. It refers to any change in climate over time, whether due to natural variability or as a result of human activity. This usage differs from that in the United Nations Framework Convention on Climate Change (UNFCCC), where climate change refers to a change of climate that is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time periods.

Gambar 3.3 merupakan skema yang memperlihatkan pengaruh manusia bagi perubahan iklim, pengaruhnya serta respon yang dilakukan terhadap perubahan iklim tersebut. Semua komponen saling memengaruhi baik itu earth system, ataupun human system bagi perubahan iklim serta melibatkan berbagai proses iklim, mitigasi, adaptasi, dampak serta vulnerability (kerentanan).

Gambar 3.3. Skema kerangka perubahan iklim antropogenik, dampak dan respon (Sumber: IPCC,2007)
Dari proses-proses diatas maka dibuat skenario iklim untuk mengetahui proyeksi. Skenario iklim yang dibuat oleh IPCC terangkum dalam Gambar 3.4.

Gambar 3.4. Skenario SRES IPCC (Sumber: IPCC,2007)

Keterangan indeks dari skenario iklim yang digunakan:

A1
- Penggunaan teknologi baru yang efisien
- Pertumbuhan ekonomi yang sangat cepat
- Populasi global mencapai puncaknya pada pertengahan abad (sekitar 9 milyar) dan menurun setelahnya
- Pengenalan teknologi baru dan lebih efisien dengan sangat cepat
- Negara-negara mengalami proses konvergensi melalui *capacity building* dan dengan bertambahnya interaksi budaya dan sosial
- Terjadi pengurangan berbagai perbedaan yang subtansif terutama dalam pendapatan per kapita regional
- Skenario famili A1 yang memiliki alternatif karakteristik pengembangan teknologi energi sebagai berikut:
 A1F1: penggunaan energi fosil yang intensif, A1T: penggunaan energi yang sebagian besar menggunakan energi non-fosil, A1B: penggunaan energi secara seimbang antara energi non-fosil dan energi fosil
A2
- Pertumbuhan populasi tinggi
- Perubahan/penggunaan teknologi berjalan lambat dan lebih beragam dibanding skenario lain
- Terjadi pertumbuhan ekonomi per kapita
- Dunia yang sangat heterogen
- Masalah utama yang dihadapi di tiap region adalah kepercayaan pada diri sendiri dan pemeliharaan identitas lokal
- Dunia yang independen dan negara-negara yang memiliki kepercayaan diri sendiri
- Terus terjadi pertambahan populasi
- Pengembangan ekonomi berorientasi secara regional
- Perubahan teknologi terjadi secara lebih lambat dan lebih terfragmentasi disertai peningkatan pendapatan per kapita

B1
- Pertumbuhan populasi rendah
- Pertumbuhan ekonomi cepat
- Penggunaan teknologi yang bersih dan efektif
- Dunia yang konvergen dengan populasi global yang mencapai puncaknya (9 miliar pada tahun 2050) di pertengahan abad dan menurun setelahnya sama yang terjadi di skenario A1, tetapi dengan perubahan kecepatan dalam struktur ekonomi sesuai dengan layanan dan informasi ekonomi
- Pengurangan dalam intensitas material
- Pengenalan teknologi yang bersih dan efisien
- Penekanan pada solusi global untuk ekonomi, sosial, dan ketahanan lingkungan, termasuk peningkatan kekayaan, tetapi tanpa tambahan inisiatif iklim
- Dunia lebih terintegrasi, lebih bersahabat (friendly) secara ekologi

B2
- Pertumbuhan populasi sedang
- Pertumbuhan ekonomi sedang
- Penggunaan teknologi yang lebih beragam tetapi tidak secepat pada skenario A1 dan B1
- Penekanan pada solusi lokal daripada solusi global untuk ekonomi, sosial dan ketahanan lingkungan
- Peningkatan populasi global yang lebih rendah dari A2
- Tingkat pengembangan ekonomi menengah (*intermediate*)
- Perubahan teknologi lebih lambat dan lebih bermacam-macam dibanding skenario A1 dan B1
- Skenario berorientasi pada proteksi lingkungan dan kekayaan sosial, yang berfokus pada tingkat lokal dan regional
- Dunia lebih terbagi-bagi, tetapi bersahabat (*friendly*) secara ekologi

![Gambar 3.5. Perbandingan hasil model yang memasukan antropogenik, alami dengan observasi (Sumber:IPCC,2007)](image)

Gambar 3.5 menunjukkan terjadinya perubahan temperatur global di laut dan darat pada tempat-tempat tertentu. Garis warna hitam
menunjukan temperatur observasi/pengamatan, warna merah merupakan temperatur hasil model dengan mempertimbangkan faktor manusia dan alam, sedangkan warna hijau hanya melibatkan faktor alam. Terlihat bahwa dalam gambar tersebut terjadi kenaikan temperatur yang besar, kenaikan ini terjadi di beberapa daerah pengamatan. Kenaikan temperatur terutama diakibatkan faktor manusia (anthropogenic). Hal ini terlihat jelas dari hasil observasi (garis warna hitam) dengan hasil model yang melibatkan faktor alam dan manusia (warna merah) yang menghasilkan temperatur yang relatif sama.

![Gambar 3.6. Perbandingan hasil model untuk enam daerah di Asia (Sumber :IPCC,2007)](image)

Hasil lainnya bisa terlihat Gambar 3.6, yang menunjukkan anomali temperatur yang mengacu pada tahun 1901-1950 untuk enam daerah Asia (Indonesia dengan lambang SEA dan berwarna hijau muda) yang berwarna hitam dengan simulasinya (warna merah yang menyelimuti garis...
hitam) yang dihasilkan oleh model MMD. Proyeksi iklim untuk anomali temperatur dari tahun 2001-2100 oleh model MMD untuk skenario iklim A1B (warna oranye). Warna di ujung sebelah kanan menunjukan rentang perubahan proyeksi iklim untuk tahun 2091-2100 bagi skenario iklim B1(biru), A1B(oranye), dan A2 (merah). Observasi yang dilakukan (garis hitam) menggunakan kurang dari 50% daerah yang diamati dalam suatu dekade pengamatan.

![Gambar 3.7. Proyeksi peningkatan temperatur global pada beberapa skenario iklim](image)

yang dijaga konstan oleh negara maju (Annex B) setelah tahun 2015, dan garis hijau merupakan proyeksi iklim berdasarkan pengurangan emisi sebesar 1% per tahun setelah tahun 2015. Proyeksi iklim di atas tidak menyertakan skenario pengurangan emisi dari negara berkembang.

11. Skenario Post-SRES
Merupakan skenario iklim berdasarkan skenario emisi yang dipublikasikan setelah IPCC selesai melaporkan SRES (Special Report on Emission Scenarios), yaitu setelah tahun 2000.

13. Skenario Emisi SRES
pengembangan teknologi energi (A1F1: penggunaan energi fosil yang intensif), A1T (penggunaan energi yang sebagian besar menggunakan energi non-fosil), A1B (penggunaan energi secara seimbang antara energi non-fosil dan energi fosil).

14. Skenario Is92

Skenario IS92a digunakan sebagai standar skenario yang digunakan dalam mengukur akibat, meskipun rekomendasi IPCC harus menggunakan ke-enam skenario tersebut untuk menunjukan tingkat ketidakpastian dalam emisi GHG. Populasi meningkat dari 11.3 juta sampai tahun 2100 dan rata-rata pertumbuhan ekonomi 2.3% per tahun antara 1990-2100, dengan campuran penggunaan sumber energi yang konvensional dan terbarukan.
Emisi tertinggi GHG dihasilkan dari skenario IS92a yang mengkombinasikan semua asumsi, pertumbuhan populasi menengah (*moderate*), pertumbuhan ekonomi yang tinggi, ketersediaan bahan bakar fosil yang tinggi bahkan penghapusan energi nuklir.

Skenario ekstrim yang lain adalah IS92c yang memiliki emisi CO2 yang menurun dan mencapai posisi di bawah tahun 1990. Hal tersebut diasumsikan bahwa populasi pertama-tama meningkat, kemudian menurun di pertengahan abad berikutnya, pertumbuhan ekonomi rendah dan terdapat beberapa batasan dari persediaan bahan bakar fosil.

15. **Skenario Sa90**

Skenario iklim yang digunakan di *The First Assessment Report of the IPCC in 1990*.

16. **Skenario Non-SRES**

Skenario yang merupakan bukan SRES (*Special Report on Emission Scenarios*), yang terdiri dari:
- PICTL: Skenario dengan menggunakan GHG konstan pada saat pre-industrial.
- 1PTO4X (1% to quadruple): Konsentrasi CO₂ bertambah dengan kecepatan 1% per tahun, mencapai 4 kali lipat, kemudian konstan.
- 1PTO2X (1% to double): Konsentrasi CO₂ bertambah dengan kecepatan 1 % per tahun, mencapai 2 kali lipat, kemudian konstan.

17. **United Nations Framework Convention on Climate Change (UNFCCC)**

18. Diagram SRES

- A1F1: skenario dengan penggunaan bahan bakar fosil secara intensif
- A1B: skenario dengan penggunaan bahan bakar fosil secara seimbang
- A1T: skenario penggunaan bahan bakar non-fosil yang lebih dominan

Gambar 3.8. Diagram SRES (Sumber: IPCC, 2007)

Tiap skenario grup terbagi menjadi dua bagian besar OS dan HS (HS: harmonized). Skenario HS artinya dalam populasi global di asumsikan produk bruto dunia dan energi terjadi keseimbangan/keselarasan. Sedangkan OS artinya menunjukan skenario yang
menggunakan penggerak iklim yang tidak terdapat di skenario iklim HS. Pengembangan dari tiap skenario baik HS dan OS diperbanyak, jadi total skenario iklim menjadi 40. Dengan angka-angka di bawah huruf OS atau HS menunjukan masing-masing jumlah skenario iklim.

Gambar 3.9. Total global tahunan emisi CO$_2$ dari semua sumber (energi, industri, dan perubahan tata guna lahan) tahun 1990-2100 (dalam giga ton karbon (GtC/yr)) untuk famili dan 6 skenario group.
Tiap warna menunjukan rentang skenario harmonized dan non-harmonized pada tiap grup. Sebagai contoh Gambar 3.9a, warna oranye (dengan skenario A1F1 ditunjukan dengan garis hitam putus-putus), warna merah (dengan skenario A1B ditunjukan dengan garis hitam solid), warna oranye muda (dengan skenario A1T ditunjukan dengan garis hitam putus-putus), merupakan rentang skenario grup yang terdiri dari skenario harmonized dan non-harmonized. Begitu pula dengan Gambar 3.9b, rentang warna coklat menunjukan rentang skenario harmonized dan non-harmonized A2 dengan garis solid hitam menunjukan skenario A2.

19. Skenario Emisi

Skenario Emisi merupakan representasi yang logis dari peningkatan emisi masa depan yang merupakan subtansi sebagai potensi radiasi aktif (GHG, aerosol), hal tersebut berdasarkan seperangkat asumsi internal yang konsisten dan koheren tentang driving forces (misalnya demografi, pengembangan sosial-ekonomi, dan perubahan teknologi) dan hubungan diantaranya.

20. Capacity Building

Dalam konteks perubahan iklim, capacity building dapat diartikan sebagai pengembangan keterampilan (skill) dan kapabilitas institusi di negara berkembang dan kondisi ekonomi dalam transisi yang mampu berpartisipasi dalam semua aspek adaptasi, mitigasi dan penelitian dalam perubahan iklim dan dalam implementasi Mekanisme Protokol Kyoto.
21. *Clean Development Mechanism (CDM)*

Menurut definisi dalam Artikel 12 dari Protokol Kyoto, CDM memiliki dua tujuan yaitu:

- Membantu negara-negara yang tidak termasuk dalam Annex I untuk mencapai daya dukung pembangunan dan berkontribusi pada konvensi.
- Membantu negara-negara lain yang termasuk Annex I dalam mencapai pemenuhan kuantitas batas emisi dan komitmen reduksinya.

Pelaksanaan *Certified Emission Reduction Units* dari proyek CDM yang dilakukan di negara-negara Non-Annex I dengan batas atau pengurangan emisi GHG yang disertifikasi oleh entitas operasional didesain oleh Conference Paris sehingga dapat menarik investor (pemerintah atau swasta). Berbagai informasi dalam proses aktivitas proyek sertifikasi digunakan untuk menutupi biaya administrasi sama halnya dengan membantu negara-negara berkembang khususnya yang rentan untuk efek merugikan dari perubahan iklim sehingga sesuai dengan biaya adaptasi.

22. *Skenario Famili*

Istilah dalam skenario iklim IPCC yang artinya satu atau lebih skenario yang dikelompokan karena memiliki kesamaan demografi, sosial-politik, ekonomi dan *storyline* teknologi (Keempat skenario famili: A1,A2,B2,B1).

23. *Storyline*

Deskripsi narasi dari skenario iklim yang menyoroti khususnya tentang karakteristik utama dan dinamik serta memiliki hubungan dengan daya penggerak iklim.

Tujuh model yang digunakan dalam IPCC:

- The UK Hadley Centre for Climate Prediction and Research (HadCM2)
- The German Climate Research Centre (ECHAM4)
- The Canadian Centre for Climate Modelling and Analysis (CGCM1)
- The US Geophysical Fluid Dynamics Laboratory (GFDL-R15)
- The Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO-Mk2)
- The National Centre for Atmospheric Research (NCAR-DOE)
- The Japanese Centre for Climate System Research (CCSR)

Model-model yang digunakan:
- BCC:CM1
- BCCR:BCM2
- CCCMA:CGCM3_1-T47
- CCCMA:CGCM3_1-T63
- CNRM:CM3
- CONS:ECHO-G
- CSIRO:MK3
- GFDL:CM2
- GFDL:CM2_1
- INM:CM3
- IPSL:CM4
- LASG:FGOALS-G1_0
- MPIM:ECHAM5
- MRI:CGCM2_3_2
- NASA:GISS-AOM
- NASA:GISS-EH
- NASA:GISS-ER
- NCAR:CCSM3
- NCAR:PCM
- NIES:MIROC3_2-HI
- NIES:MIROC3_2-MED
- UKMO:HADCM3
- UKMO:HADGEM1

24. Climate Feedback
Merupakan mekanisme interaksi antara proses-proses yang terjadi
di sistem iklim, proses tersebut disebut proses timbal-balik jika suatu proses memengaruhi perubahan proses yang lain dan proses yang lain tersebut juga akan memengaruhi proses yang pertama tadi. Proses timbal-balik positif terjadi jika memperkuat proses awal, sedang proses timbal-balik negatif akan mengurangi proses awal.

25. Sensitivitas Iklim

Sensitivitas iklim merupakan istilah yang digunakan dalam laporan IPCC. Istilah *Equilibrium climate sensitivity* merujuk pada perubahan keseimbangan rata-rata tahunan temperatur permukaan global yang diikuti oleh konsentrasi CO$_2$ sebanyak 2 kali lipat di atmosfer. Akibat keterbatasan komputasi, sensitivitas keseimbangan iklim dalam model iklim biasanya diestimasi dengan menjalankan model sirkulasi kopel global atmosfer untuk suatu model laut *mixed-layer*, sebab sensitivitas ekuilibrium iklim sebagian besar ditentukan oleh proses atmosfer.

26. Variabilitas Iklim

Variabilitas iklim merujuk pada variasi pada keadaan rata-rata dan statistik (standard deviasi, kejadian ekstrem) dari iklim pada semua skala spasial dan temporal dimana peristiwa tersebut terjadi. Variabilitas bisa disebabkan oleh proses internal dengan sistem iklim (variabilitas internal), atau variasi natural atau *anthropogenic external forcing* (variabilitas eksternal).

27. Assessment Reports

Gambar 3.10. Iklim global dan proyeksi iklim menggunakan scenario SRES (Sumber:IPCC,2007)

Gambar 3.10 menunjukkan bagaimana jika skenario tersebut dijalankan dan pengaruhnya terhadap (a) Emisi CO₂, (b) Konsentrasi CO₂,
(c) Emisi SO₂, (d) Perubahan Temperatur, (e) Kenaikan Permukaan Laut. Khusus untuk gambar (d) dan (e) terdapat rentang kemungkinan hasil model. Gambar (e) menunjukkan rentang yang sangat besar hasil semua model SRES (selubung garis hitam paling lurus), beberapa model SRES (selubung yang berwarna abu-abu), serta rata-rata model SRES (selubung warna abu-abu yang lebih gelap). Sedangkan berbagai garis yang beraneka warna menunjukkan rentang hasil model dari skenario masing-masing, misal warna garis merah solid merupakan skenario model A1B maka rentangan hasil model untuk skenario A1B setinggi garis tersebut, begitu pula garis yang lain.

3.3 Deskripsi Skenario Proyeksi Iklim

1. SKENARIO A1

Skenario A1 menggambarkan dunia di masa depan dengan pertumbuhan ekonomi yang sangat cepat, populasi global mencapai puncaknya di pertengahan abad dan kemunduran setelahnya serta pengenalan teknologi baru dan lebih efisien dengan sangat cepat. Negara-negara mengalami proses konvergensi melalui capacity building dan dengan bertambahnya interaksi budaya dan sosial dengan terjadinya pengurangan berbagai perbedaan yang substansif terutama dalam pendapatan perkapita regional. Skenario A1 berkembang menjadi tiga grup yang menggambarkan arah pengembangan karakteristik teknologi sebagai berikut: energi fosil yang intensif (A1F1), sumber energi non fosil (A1T), dan penggunaan energi fosil dan non fosil yang seimbang (A1B) dimana keseimbangan didefinisikan dengan tidak mengandalkan satu sumber energi tertentu dan dengan asumsi bahwa tingkat ketersediaan semua energi sama-sama dapat diperbaiki dan sampai berakhirnya penggunaan berbagai teknologi.

Skenario A1 ini merupakan penggambaran kondisi dimasa depan di mana faktor perubahan iklim merupakan salah satu pemicu yang sangat

Prakiraan terbaik dan *likely range* untuk pemanasan suhu global rata - rata yang dibuat dalam enam SRES skenario emisi dapat dilihat pada tabel 3.1 Sebagai contoh prakiraan terbaik untuk skenario tertinggi (A1F1) adalah 4°C (*likely range* antara 2,4 °C - 6,4 °C).

Walaupun proyeksi ini konsisten secara luas dengan mengutip jangka waktu dalam TAR (*Third Assessment Report*) (1,4 °C - 5,8C), namun secara langsung tidak sebanding (Tabel 3.2). FAR (*Fourth Assessment Report*) lebih maju dalam memberikan prakiraan terbaik dan dalam menaksir kemungkinan range tiap - tiap *marker scenarios*. Taksiran baru dari *likely ranges* saat ini telah dipercaya dalam nilai yang lebih besar dari model iklim yang semakin komplek dan nyata, baik sebagai informasi
baru mengenai pengaruh arus balik dari siklus karbon dan constraints on climate response from observations.

Tabel 3.1. Analisis pengaruh manusia pada kecendrungan dan proyeksi untuk cuaca ekstrem (Sumber: IPCC, 2007)

<table>
<thead>
<tr>
<th>Phenomenon* and direction of trend</th>
<th>Likelihood that trend occurred in late 20th century (typically post 1960)</th>
<th>Likelihood of a human contribution to observed trend</th>
<th>Likely in many regions since 1970s</th>
<th>More likely than not</th>
<th>Likely</th>
<th>More likely than not</th>
<th>Virtually certain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmer and fewer cold days and nights over most land areas</td>
<td>Very likely*</td>
<td>Likely</td>
<td>Virtually certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warmer and more frequent hot days and nights over most land areas</td>
<td>Very likely*</td>
<td>Likely (nights)*</td>
<td>Virtually certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm spells/heat waves. Frequency increases over most land areas</td>
<td>Likely</td>
<td>More likely than not</td>
<td>Very likely</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy precipitation events. Frequency (or proportion of total rainfall from heavy falls) increases over most areas</td>
<td>Likely</td>
<td>More likely than not</td>
<td>Very likely</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area affected by droughts increases</td>
<td>Likely in many regions since 1970s</td>
<td>More likely than not</td>
<td>Likely</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intense tropical cyclone activity increases</td>
<td>Likely in some regions since 1970</td>
<td>More likely than not</td>
<td>Likely</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased incidence of extreme high sea level (excludes tsunamis)</td>
<td>Likely</td>
<td>More likely than not</td>
<td>Likely</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 3.2. Proyeksi rata-rata pemanasan global dan kenaikan permukaan laut (Sumber: IPCC, 2007)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best estimate</td>
<td>Likely range</td>
<td>NA</td>
</tr>
<tr>
<td>B1 scenario</td>
<td>1.8</td>
<td>1.1 - 2.9</td>
<td>0.18 - 0.38</td>
</tr>
<tr>
<td>A1T scenario</td>
<td>2.4</td>
<td>1.4 - 3.8</td>
<td>0.20 - 0.45</td>
</tr>
<tr>
<td>B2 scenario</td>
<td>2.4</td>
<td>1.4 - 3.8</td>
<td>0.20 - 0.43</td>
</tr>
<tr>
<td>A1B scenario</td>
<td>2.8</td>
<td>1.7 - 4.4</td>
<td>0.21 - 0.48</td>
</tr>
<tr>
<td>A2 scenario</td>
<td>3.4</td>
<td>2.0 - 5.4</td>
<td>0.23 - 0.51</td>
</tr>
<tr>
<td>A1F1 scenario</td>
<td>4.0</td>
<td>2.4 - 6.4</td>
<td>0.26 - 0.59</td>
</tr>
</tbody>
</table>

Gambar 3.13. Proyeksi perubahan presipitasi DJF, JJA global dalam skenario A1B (Sumber: IPCC, 2007)

Projected warming pada abad 21 secara geografis menunjukan pola skenario serupa yang berdiri sendiri sama dengan pengamatan yang dilakukan pada beberapa dekade sebelumnya. Pemanasan diduga lebih besar di daratan dan pada umumnya tinggi di lintang utara dan lebih rendah di laut bagian selatan dan sebagian laut Atlantik utara (Gambar 3.12). Sejak TAR, ada peningkatan pemahaman dalam memproyeksikan pola presipitasi. Jumlah presipitasi meningkat *very likely* di lintang tinggi, sedangkan pada umumnya menurun *likely* di daerah daratan subtropics.

2. SKENARIO A2

Komitmen perubahan iklim setelah stabilisasi kekuatan radiatif diharapkan sekitar 0,5 - 0,6° C terutama di abad mendatang. Rata-rata multi-model ketika konsentrasi nilai gas rumah kaca dan aerosol stabil pada tahun 2000 setelah simulasi pada abad ke 20, dan me running untuk 100 tahun berikutnya, sekitar 0,6° C (relatif dari 1980-1999) di tahun 2100.

Skenario emisi SRES digunakan dengan di desain untuk mempresentasikan asumsi masa depan yang sesuai bahwa tidak ada kebijakan klimat yang akan diterapkan. Dalam bab ini tidak menganalisa
skenario yang lain yang secara eksplisit terhadap kebijakan mitigasi perubahan iklim. Meski demikian, skenario emisi SRES merupakan variasi luas yang menguraikan skenario SRES pada terminologi emisi antropogenik (emisi yang disebabkan oleh aktivitas manusia) seperti emisi CO₂, CH₄, dan SO₂ (Nakicenovic dan Swart, 2000) sebagaimana ditunjukkan pada tiga (3) panel teratas dari Gambar 3.15.

Sebagai akibat secara langsung dari perbedaan emisi, konsentrasi proyeksi lebih luas untuk enam (6) skenario SRES ilustrasi (lihat panel pada baris ke empat dari enam pada Gambar 3.15 untuk konsentrasi gas rumah kaca utama, CO₂, CH₄ dan N₂O).

3. SKENARIO B1

Nakicenovic (2000) mendeskripsikan bahwa dalam skenario B1 kesadaran lingkungan dan sosial diasumsikan tinggi. Di samping itu,

Gambar 3.15. Proyeksi pemanasan permukaan global dan emisi GRK dalam berbagai skenario (Sumber: IPCC, 2007)

a. Model IMAGE 2.1

terdiri dari 3 (tiga) sistem model yang saling berhubungan, yaitu: sistem energi-industri (EIS), sistem lingkungan terestrial (TES), dan sistem atmosfer-lautan (AOS).

EIS menghitung emisi gas rumah kaca di 13 wilayah sedunia. Emisi yang terkait dengan energi dihitung berdasarkan model simulasi Targets Image Energy Regional (TIMER), yang merupakan model dinamis dengan keputusan investasi untuk efisiensi energi, pembangkit listrik dan suplai energi berdasarkan permintaan yang diketahui terlebih dahulu, biaya atau harga relatif, dan kelambatan berkaitan dengan hal institusional dan informasi. Model menggunakan 13 wilayah dan 5 sektor ekonomi. Perubahan teknologi dan dinamika harga bahan bakar memengaruhi intensitas-energi, penggantian (substitusi) bahan bakar dan penetrasi penggunaan bahan bakar non-fosil seperti listrik tenaga surya dan bahan bakar biomassa. Gambar 3.16 menunjukkan skema struktur model IMAGE-EIS/TIMER.
TES mensimulasikan penggunaan lahan global dan perubahan tutupan lahan serta pengaruhnya terhadap emisi gas rumah kaca dan precursor ozon dan terhadap fluks karbon antara biosfer dan atmosfer. TES juga bisa digunakan untuk mengevaluasi keefektifan kebijakan penggunaan lahan untuk mengendalikan hasil akumulasi gas rumah kaca, untuk meng-assess dampak pada lahan akibat penggunaan bio-fuel, untuk mengevaluasi dampak perubahan iklim pada ekosistem global dan pertanian, dan untuk mengetahui pengaruh tren jumlah penduduk, ekonomi, dan teknologi dalam mengubah tutupan lahan global.

b. Hasil Simulasi IMAGE 2.1 untuk Skenario B1

Untuk driving force jumlah penduduk dunia, IMAGE 2.1 menggunakan trayektori eksogenik (exogenous trajectory) yang telah disepakati dalam tim SRES (Gambar 3.17). Laju pertumbuhan penduduk dalam skenario B1 kurang lebih sama dengan laju dalam skenario A1. GDP per kapita diasumsikan tumbuh paling cepat di wilayah yang kurang

Gambar 3.19. Laju Gross Regional Product (GRP) per kapita dalam skenario B1. (Sumber: de Vries et al., 2011).

Berkaitan dengan energi, skenario B1 mendeskripsikan permintaan jasa energi per satuan aktivitas (UEI, *Useful Energy Intensity*) menurun, yakni sebesar 40-50% di sektor industri di wilayah OECD (Canada, USA, OECD Eropa, Oseania, Jepang) pada tahun 2100 sedangkan di negara yang kurang terindustrialisasi intensitas ini mula-mula meningkat dan mencapai maksimum antara tahun 1990-2040 dan kemudian menurun. UEI di sektor rumah tangga dan komersial mengikuti pola yang serupa. Rasio energi primer dan GRP menurun sebagaimana terlihat pada

Gambar 3.22. Pemanfaatan energi primer dalam skenario B1 untuk tiap-tiap sumber energi. (Sumber: de Vries et al., 2011).
Emisi karbon total perlahan-lahan meningkat hingga mencapai puncaknya antara tahun 2060 dan 2070 sebesar 12 GtC-ekuivalen (Gambar 3.24). Sekitar tahun 2060 emisi CO$_2$ dari pembakaran bahan bakar fosil mencapai sekitar 9.5 GtC/tahun (maksimum) dan kemudian di akhir abad ke-21 mencapai level emisi CO$_2$ tahun 1990 (Gambar 3.25). Laju emisi CO$_2$ meningkat terjadi di wilayah ASIA dan ROW sedangkan dua wilayah lainnya justru berkurang. Akibat emisi ini konsentrasi CO$_2$ di atmosfer meningkat hingga sekitar 600 ppmv (Gambar 3.26). Akibatnya, temperatur di tahun 2100 sekitar 1.6°C lebih panas dari temperatur tahun 1990 (Gambar 3.27).

Gambar 3.25. Emisi CO₂ regional dari pembakaran bahan bakar fosil dalam skenario B1. (Sumber: de Vries et al., 2011).

Gambar 3.27. Perubahan temperatur permukaan rata-rata dalam skenario B1 (hasil simulasi IMAGES 2.1). (Sumber: de Vries et al., 2011).

4. SKENARIO B2

a. Komponen Pokok
Komponen pokoknya meliputi:
Skenario B2 indikasinya yaitu lebih pada peningkatan mengenai lingkungan dan ketahanan sosial dibandingkan dengan A2 storyline,

- Terus meningkatnya kebijakan pemerintah dan strategi perusahaan nasional dan lokal yang memengaruhi kesadaran lingkungan warganegara, Dengan kecenderungan kepada kepercayaan diri lokal dan penguatan komunitas,

- Berkurangnya institusi internasional penting ditandai dengan dan pergerakan kearah lokal dan regional dalam pengambilan keputusannya secara tersusun dan terorganisasi,

- Kesejahteraan manusia, persamaan hak dan proteksi lingkungan secara menyeluruh dengan prioritas tinggi, dan terus menunjukkan solusi komunitas sosial untuk solusi teknik dan berbagai implementasi yang rata-rata bervariasi.

b. Tampilan Skenario B2

Gambar 3.29. Total Global Tahunan Emisi CO₂ dari Semua Sumber (Energi, Industri dan Perubahan Tata GunaLahan) Tahun 1990 - 2100 (dalam giga ton karbon (GtC/yr)) skenario B2 (Sumber: IPCCAR4, 2007)

Gambar 3.30. Arah dan kecuraman skenario B2 (Sumber: IPCC AR4, 2007)

Gambar 3.31. Perubahan Suhu Rata-Rata Global Change (Sumber: IPCC, 2007)

Secara umum, tingkat pendidikan tinggi akan memajukan pengembangan dan proteksi lingkungan. Tentu saja, proteksi lingkungan merupakan salah satu dari kesungguhan prioritas internasional dalam B2. Tetapi, strategi untuk tantangan lingkungan tidak menjadi prioritas utama dan tidak banyak keberhasilan dalam strategi untuk merespon lingkungan lokal dan regional. Pemerintah mempunyai kesulitan dalam mendesain
dan mengimplementasikan kesepakatan yang telah mengabungkan proteksi lingkungan global, yang sama ketika dihubungkan dengan keuntungan ekonomi global.

Tipe Skenario Perubahan Iklim

Ada beberapa tipe skenario yang bisa digunakan dalam membuat proyeksi perubahan iklim guna memproyeksikan dampak dan adaptasi terhadap perubahan iklim tersebut. Tipe skenario utama yang akan dibahas yaitu sintetik dan analog, termasuk kelebihan dan kekurangannya

1. **Skenario Sintetik**

Skenario Sintetik diyakini sebagai skenario yang paling sederhana. Pada umumnya, skenario ini digunakan untuk menjelaskan sensitivitas dari variabilitas iklim (Barrow and Lee 2003). Skenario sintetik adalah teknik dimana secara partikular dari iklim atau hubungan antar elemen yang berkaitan diubah secara real tetapi dengan nilai tersendiri, seringnya berdasarkan pada interpretasi kualitatif dari simulasi model iklim untuk suatu area (Carter et al. 1999).

Carter et al. (1999) beberapa keuntungan skenario seperti:
- Skenario ini sederhana diterapkan untuk menganalisa dampak, transparan dan mudah diinterpresikan.
Skenario ini mencakup area yang luas dari kemungkinan perubahan pada iklim, menawarkan alat yang sangat berguna untuk mengevaluasi sensitifitas dari kemungkinan perubahan iklim. Setiap variabel dapat diubah secara independen, skenario sintetik juga membantu untuk mendiskripsikan relatif sensitif untuk merubah perbedaan variabel iklim. Skenario juga membantu dalam mengidentifikasi diawal atau menghentikan respon yang mungkin terjadi di bawah magnitude atau laju dari perubahan iklim.

Berbagai studi dapat dengan mudah menerapkan skenario sintetis yang sama untuk mengeksplor relatif sensitivitas yang ditampilkan per unit. Hal tersebut sangat berguna untuk menggabungkan sintetik efek potensial dari perubahan iklim dalam berbagai sektor dan daerah.

Carter et al. (1999) kekurangan skenario sintetis:

- Skenario ini adalah arbitrary (keputusan dibuat sendiri). Skenario ini jarang mempresetasikan paket realistik dari perubahan fisik, pada umumnya representasi penyesuaian diri akan seragam melebihi waktu dan tempat juga ketidak konsistenan variabel.
- Skenario sintetis mungkin tidak konsisten dengan ketidak pastian jarak dari perubahan global. Keterbatasan Ini dapat diatasi jika pemilihan skenario sintetik dipandu oleh informasi dari GCMs.

2. Skenario Analog

Skenario analog dibangun dengan mengidentifikasi rekaman climate regime yang mana dapat digabungkan dengan iklim ke depan mengantisipasi untuk bagian wilayah. Rekaman iklim ini dapat diidentifikasi dengan temporal analog (menggunakan data observasi yang panjang pada suatu daerah) atau dengan spasial analog (dari lokasi geografi) (Carter et al. 1999; Barrow and Lee 2003)

Ada kekurangan dari skenario analog. Kasus untuk analog iklim mungkin berbeda dari kasus underlying gas rumah kaca yang menyebabkan perubahan iklim (Carter et al. 1999). Paleoclimate change
mungkin disebabkan oleh variasi orbit bumi, contohnya ketika periode suatu instrumen berubah hasilnya atau hubungan pada natural selama berubah pada sirkulasi atmosfer (Carter et al. 1999). Asumsi penggabungan temporal dan spasial skenario analog ini iklim akan merespon di dalam cara yang sama untuk perubahan unit pada tekanan maupun sumber, terjadi jika boundary condition berbeda (Barrow and Lee 2003). Skenario ini mempunyai keunggulan representasi kondisi yang mempunyai observasi dan experience. Lebih tepatnya dengan kondisi dihipotesa oleh model. Nilai utama skenario analog tidak benar dalam uji dan validasi dampak model, tetapi hal ini tidak biasa direkomendasikan bahwa seknario ini diadopsi untuk representasi iklim kedepan pada dampak kuantitatif.

Metode lainnya mengerjakan observasi pola sirkulasi atmosfer sebagai analog (Carter et al. 1999).

Analog spasial menggunakan area dimana iklim sekarang dapat digunakan untuk studi area di masa depan. Kelemahan dari pendekatan dapat terjadi kurangnya korespondensi antara ciri khas yang pasti (climatic dan non-climatic) dari dua daerah seperti daylength dan soil. Karenanya ini tidak seperti sekarang kombinasi dari kondisi climatic dan non-climatic paling sering pada daerah analog sekarang secara fisik akan menjadi skenario dari kondisi studi area di masa depan (Carter et al. 1999).

Model Iklim Global atau Model Iklim Regional Dengan Berbagai Skenario Emisi

Tabel 3.3. Model GCM untuk skenario emisi SRES

<table>
<thead>
<tr>
<th>GCM</th>
<th>Organization</th>
<th>Country</th>
<th>Grid Size</th>
<th>SRES Emission Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGCM2</td>
<td>Canadian Centre for Climate Modelling and Analysis</td>
<td>Canada</td>
<td>3.8° X 3.8°</td>
<td>A1 3 A2 B1 B2</td>
</tr>
<tr>
<td>GFDL R30</td>
<td>Geophysical Fluid Dynamics Laboratory</td>
<td>USA</td>
<td>2.2° X 3.8°</td>
<td>A1 3 A2 B1 B2</td>
</tr>
<tr>
<td>ECHAM 4</td>
<td>Max Planck Institute für Meteorologie</td>
<td>Germany</td>
<td>2.8° X 2.6°</td>
<td>A1 3 A2 B1 B2</td>
</tr>
<tr>
<td>CSIRO-Mk2b</td>
<td>Commonwealth Scientific Industrial Research Organization</td>
<td>Australia</td>
<td>3.2° X 5.6°</td>
<td>F1 1 A2 B1 B2</td>
</tr>
<tr>
<td>CCSR/NIES</td>
<td>Center for Climate Research – National Institute for Environmental Studies</td>
<td>Japan</td>
<td>5.6° X 5.6°</td>
<td>A1 3 A2 B1 B2</td>
</tr>
<tr>
<td>HadCM3</td>
<td>Hadley Centre</td>
<td>United Kingdom</td>
<td>2.5° X 3.8°</td>
<td>F1 1 A2 B1 B2</td>
</tr>
<tr>
<td>NCAR PCM</td>
<td>National Centre for Atmospheric Research</td>
<td>USA</td>
<td>2.8° X 2.8°</td>
<td>A1 3 A2 B1 B2</td>
</tr>
</tbody>
</table>

Source: Canadian Institute for Climate Studies 2003c; Ruosteenoja et al. 2003

A1 = Economic Global Focus Simulation
F1 = Fossil Fuel Intensive Simulation
T = Non-Fossil-Fuel Transition Simulation
A2 = Economic Regional Focus Simulation
B1 = Environmental Global Focus Simulation
B2 = Environmental Regional Focus Simulation
Tabel 3.4. Parameter dalam model-model yang menjalankan skenario emisi SRES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CGCM 2</th>
<th>GFDL R30</th>
<th>ECHAM 4</th>
<th>CSIROMk2b</th>
<th>CCSRNIES</th>
<th>HadCM3</th>
<th>NCAR PCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Temperature</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Minimum Temperature</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Mean Temperature</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Precipitation</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Solar Radiation</td>
<td>Incident</td>
<td>Surface Shortwave</td>
<td>Incident</td>
<td>Incident</td>
<td>Incident</td>
<td>Incident</td>
<td>Incident</td>
</tr>
<tr>
<td>Mean Sea Level Pressure</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>Derived</td>
<td>✔</td>
<td>Derived</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Specific Humidity</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Vapour Pressure</td>
<td>Derived</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>Derived</td>
<td>Derived</td>
</tr>
<tr>
<td>Diurnal Temperature Range</td>
<td>Derived</td>
<td>✔</td>
<td>Derived</td>
<td>Derived</td>
<td>Derived</td>
<td>Derived</td>
<td>Derived</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Cloud</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Evaporation</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Soil Moisture</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Snow Water Equivalent</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Surface Temperature</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Geopotential Height</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Sea Ice</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Snow Depth</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Snow Melt</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Source: Canadian Institute for Climate Studies 2003d

Global Climate Models (GCMs) merepresentasikan proses fisis di dalam atmosfer, ocean, cryospher dan land surface (Carter et al. 1999). GCMs menggambarkan iklim menggunakan grid tiga dimensi di bumi. Model ini mempunyai resolusi antara 250 - 600 km dan antara 10 - 20 vertical layer atmosfer dan terkadang 30 layer untuk ocean (Carter et al. 1999; Barrow and Lee 2003).

Carter et al. (1999) menyatakan bahwa GCMs hanya dapat digunakan untuk simulasi respon dari sistem perubahan iklim dalam peningkatan konsentrasi gas rumah kaca dan faktor lainnya. GCMs terbaru dapat digunakan membedakan antara efek pemanasan dari gas
rumah kaca dan efek pendinginan daerah oleh aerosol sulfat (Barrow and Lee 2003). GCMs juga memungkinkan konjungsi dengan nested regional climate models, yang mempunyai potensi untuk menambah kondisi geografi dan fisik konsisten mengestimasi iklim regional untuk analisa dampak (Carter et al. 1999).

Kritikan

Skenario SRES mendapat kritikan tajam dari Ian Castles, mantan ahli statistik Australia dan David Henderson, mantan ekonom dari Organization for Economic Co-operation and Development (OECD). Inti kritikan mereka adalah penggunaan market exchange rates (MER) untuk perbandingan internasional, sebagai gantinya dapat digunakan PPP exchange rate untuk mengoreksi perbedaan dalam transaksi energi. Perdebatan tersebut terus berlangsung sampai saat ini.

Menurut Ian Catles dan David Henderson, penggunaan MER di skenario SRES akan menekan perbedaan pendapatan untuk saat ini dan terjadi over estimate mengenai pertumbuhan ekonomi di masa datang di negara berkembang. Akibatnya hal ini akan mendorong over estimate emisi GHG di masa depan. Selanjutnya, IPCC harus membuat perubahan
iklim yang lebih dramatik daripada yang diproyeksikan sekarang. Akan tetapi, perbedaan dalam pertumbuhan ekonomi akan diimbangi oleh perbedaan dalam intensitas energi. Beberapa ahli mengatakan bahwa efeknya akan saling menghilangkan secara penuh, sebagian ahli mengatakan akan saling menghilangkan sebagian. Sehingga secara keseluruhan, pengaruh perubahan MER menjadi PPP akan memiliki efek minimum pada karbon dioksida di atmosfer. Bahkan jika perubahan iklim global tidak berpengaruh, hal tersebut ditentang bahwa distribusi emisi regional dan pendapatan sangat berbeda antara skenario MER dan PPP. Perdebatan ini dipengaruhi debat politik, dalam skenario PPP, Cina dan India lebih kecil sumbangsihnya untuk emisi global. Hal tersebut juga menimbulkan pengaruh kerentanan (vulnerability) pada perubahan iklim dalam suatu skenario PPP, negara-negara miskin tumbuh lebih lambat dan akan mengalami akibat yang lebih besar.

Hasil pemodelan iklim global skenario IPCC untuk keperluan nasional yang telah di downsampling secara dinamis juga belum dilakukan kajian mendalam untuk kasus nasional. Kesulitan utama adalah ketersediaan data dan fasilitas. Untuk dapat melakukan pemodelan iklim skenario IPCC maka perlu dilakukan komputasi memakai data output keluaran pemodelan IPCC berdasarkan berbagai skenario yang ada. Data yang akan diolah tersebut sangat massif sehingga tidak dapat dilakukan download secara langsung dari internet meskipun data untuk keperluan tersebut telah tersedia di internet untuk di download. Kesulitan kedua adalah fasilitas komputasi yang kurang memadai dari lembaga penelitian iklim di Indonesia karena untuk keperluan komputasi yang masif tersebut diperlukan kemampuan fasilitas komputasi yang sangat canggih seperti sebuah Linux cluster.

Metode downsampling secara statis merupakan metoda relatif simpel dengan memakai data hasil pemodelan global skala resolusi kasar untuk dilakukan pendekatan pada skala lokal. Meski hasilnya tidak sebaik dengan pendekatan downsampling secara dinamis, tetapi lebih mudah
dilakukan serta tidak membutuhkan fasilitas komputasi yang sangat canggih.

Gambar 3.32. Proyeksi konsentrasi CO$_2$ global dan Indonesia menggunakan beberapa skenario proyeksi iklim

Keluaran dari kerja ini akan sangat bermanfaat bagi kepentingan ilmu dasar perubahan iklim benua maritim Indonesia terutama pada perubahan pola curah hujan dan parameter utama iklim lainnya seperti suhu, angin lokal dan kelembapan. Beberapa faktor parameter iklim tersebut akan bermanfaat bagi sektor terkait secara langsung dalam membuat perencanaan kegiatan adaptasi dan mitigasinya.

Manfaat utama lainnya adalah pembuatan peta rawan akibat perubahan iklim nasional yang dapat menjadi peta kerentanan akibat
perubahan iklim yang dapat menjadi acuan nasional adaptasi perubahan iklim. Pada saat ini belum ada hasil pemodelan iklim global yang memiliki resolusi sangat tinggi dan dipakai bagi keperluan sektor nasional terkait. Permasalahan utama adalah ketiadaan sumber daya komputasi di tingkat nasional maupun di tingkat internasional. Hingga saat ini baru Pusat Komputasi Earth Simulator di Yokohama Jepang yang baru memiliki kemampuan tersebut. Hasil dari simulasi global pada pusat komputasi tersebut tersedia hingga resolusi 20 km atau sekitar 0.18° yang merupakan resolusi sangat tinggi baik hingga level pemodelan skala meso dan regional.
4.1 Model Analisis GRK

Model iklim baik yang konvensional maupun yang non-konvensional memberi gambaran tentang proses-proses fisis dan dinamis yang memengaruhi terbentuknya deret waktu variabel-variabel iklim. Model iklim tersebut harus terus dikembangkan untuk meningkatkan akurasi dan kemampuannya dalam memprediksi iklim. Atmosfer di atas Benua Maritim di Indonesia memiliki dinamika dengan tingkat non linearitas yang sangat tinggi sebagai akibat dari sangat beragamnya topografi, vegetasi, serta pengaruh monsun dan interaksi laut-atmosfer di Samudra Pasifik dan Samudra Hindia di samping interaksi darat-atmosfer-laut di Benua Maritim Indonesia sendiri. Eksperimen-eksperimen awal penerapan sejumlah model numerik iklim di Indonesia, baik yang berbasis model sirkulasi global (GCM) maupun model iklim regional (RCM, LAM,REMO) telah dilakukan oleh Aldrian (Aldrian., dkk(2003); Aldrian., dkk(2004a); Aldrian., dkk(2004b) dan Kadorsah (Kadorsah, 2006). Sehingga perlunya penyesuaian dan atau perbaikan terhadap sejumlah parameterisasi dan mekanisme fisis dan dinamis sebelum digunakan sebagai piranti untuk prakiraan, simulasi dan aplikasi sektoral. Salah satunya digunakan untuk analisis GRK.

Model-model iklim dinamik umumnya dijalankan pada mesin-mesin komputasi yang besar (superkomputer) yang memerlukan biaya tinggi untuk pengadaan maupun operasi dan pemeliharaannya. Dalam tahun-tahun terakhir ini telah berkembang teknik pemrograman paralel dan PC-clustering dengan kinerja komputasi yang expandable hingga mendekati kinerja mesin-mesin besar. Mengembangkan dan mengevaluasi model iklim dinamik skala global, regional (meso) dan lokal (mikro) yang dapat

4.2 RegCM4

1. Deskripsi Model

Ide mengenai model area terbatas (LAMs-Limited Area Models) yang dapat digunakan untuk kajian-kajian regional awalnya diusulkan oleh Dickinson (Dickinson, dkk, 1989) dan Giorgi (Giorgi, 1990). Ide ini berdasarkan pada konsep nesting satu arah (one-way nesting), dimana bidang meteorologi dalam skala yang luas dari Global Circulation Model (GCM) beroperasi menyediakan kondisi boundary lateral (LBCs-Lateral Boundary Conditions) awal serta bergantung pada waktu untuk simulasi-simulasi resolusi tinggi Regional Climate Model (RCM), tanpa adanya umpan balik dari RCM terhadap GCM yang sedang beroperasi.

Pada tahun-tahun terakhir ini, beberapa skema fisis yang baru, yang tersedia bagi penggunaan RegCM, kebanyakan berdasarkan pada skema fisis dari versi terakhir dari Community Climate Model (CCM), Community Climate Model versi 3 (CCM3) dari Kiehl dkk (1996). Pertama, paket transfer radiasi CCM2 digantikan oleh CCM3. Pada paket CCM2, dampak dari H₂O, O₃, O₂, CO₂, dan awan dihitung oleh model. Transfer radiasi solar diberi perlakuan dengan pendekatan δ-Eddington dan radiasi awan bergantung pada parameter tiga skema tipe awan, tutupan fraksi awan, kandungan air yang ada di awan, radius efektif droplet awan. Skema CCM3 mempunyai struktur yang sama dengan CCM2, namun CCM3 memiliki fitur-fitur baru seperti dampak dari gas-gas rumah kaca (NO₂, CH₄, CFC₅), aeorosol-aerosol atmosferik, dan awan es.
Perubahan utama yang lain adalah pada daerah awan dan proses-proses presipitasi. Skema kelembapan eksplisit Hsie (Nellie E.dkk.2010) ditambahkan dengan versi yang sederhana karena skema asli terlalu mahal secara komputasional untuk dijalankan di model. Pada skema yang sederhana, hanya persamaan prognostik untuk kandungan air di awan yang dimasukkan ke dalam model, yang dapat melakukan perhitungan rumus untuk kandungan air di dalam awan, adveksi dan percampuran oleh turbulensi, evaporasi ulang dalam kondisi jenuh, dan konversi di dalam hujan melalui kondisi autokonversi. Pembahuan yang utama dari skema ini terutama dalam hal mikrofisis yang sederhana, namun pada kenyataannya, variabel kandungan air di dalam awan secara langsung digunakan dalam penghitungan radiasi awal. Pada versi sebelumnya dari model ini, variabel kandungan air di dalam awan untuk penghitungan radiasi ditentukan di dalam kondisi kelembapan relatif lokal. Penambahan fitur ini sangat penting dan mencapai secara jauh bagian dari interaksi di antara penghitungan simulasi siklus hidrologi dan jumlah energi.

Sistem pemodelan RegCM memiliki 4 komponen: Terrain, ICBC, RegCM, dan Postprossesor. Variabel terrestrial (meliputi ketinggian, penggunaan lahan, dan temperatur permukaan laut (SST)) dan data meteorologi isobarik tiga dimensi ter interpolasi secara horizontal dari latitude-longitude dengan domain resolusi yang tinggi baik dari proyeksi Rotasi Mercator, Conformal Lambert, atau proyeksi Polar Stereografis. Interpolasi vertikal dari level tekanan sampai sistem koordinat σ dari RegCM juga ditunjukkan. Permukaan σ yang dekat dengan permukaan tanah secara dekat mengikuti pola terrain, dan permukaan σ yang lebih tinggi tingkatannya cenderung mendekati permukaan isobarik (Gambar 4.1). Karena resolusi horisontal dan vertikal serta ukuran domain bervariasi, maka paket program pemodelan, dan jumlah penyimpanan hard-disk yang diperlukan bervariasi sesuai dengan kebutuhan.

2. Grid Vertikal dan Horisontal Model RegCM

Pengenalan pertama mengenai konfigurasi RegCM sangat berguna. Sistem pemodelan biasanya mendapatkan dan menganalisis data pada permukaan tekanan, namun hal ini harus diinterpolasi ke dalam koordinat vertikal dari model sebelum di-input ke dalam model. Koordinat vertikal mengikuti kondisi terrain (seperti pada Gambar 4.1) yang berarti bahwa tingkat grid yang lebih rendah mengikuti terrain, sedangkan semakin ke atas permukaan semakin datar. Level menengah semakin lama semakin mendatar karena tekanan semakin ke atas semakin menurun seiring dengan kenaikan level pada model. Koordinat σ digunakan untuk menjelaskan tingkat model dimana p adalah tekanan, p_t adalah tekanan level teratas yang konstan, p_s adalah tekanan permukaan.

$$\sigma = \frac{(p-p_t)}{(p_s-p_t)} \quad (1)$$

Dapat dilihat dari persamaan diatas serta Gambar 4.1 bahwa nilai σ adalah nol (0) di puncak teratas dan bernilai satu di permukaan. Resolusi

3. Faktor-faktor Skala Peta dan Proyeksi Peta

Sistem pemodelan mempunyai satu pilihan dari empat proyeksi peta. Conformal Lambert sesuai untuk latitude pertengahan, Polar Stereographic untuk latitude tinggi, Normal Mercator untuk latitude rendah, dan Rotated Mercator untuk pilihan ekstra. Arah x dan y pada model tidak berkorespondensi dengan arah Barat-Timur dan Utara-Selatan kecuali untuk proyeksi Normal Mercator, dan oleh karena itu angin observasi harus dirotasi terhadap grid model dan komponen u dan v pada model perlu dirotasi sebelum dibandingan dengan pengamatan. Transformasi ini dihitung di dalam pre-prosessor model yang menyediakan data untuk grid model. Faktor skala peta m, dijelaskan oleh:

$$m = \text{jarak di grid})/(\text{jarak sesungguhnya di bumi})$$
dan nilainya biasanya mendekati satu, bervariasi tergantung latitude, mewakili sebentuk daerah yang kecil, sehingga ketika dimana saja dx=dy, tetapi panjang grid bervariasi di seluruh domain untuk mewakili permukaan bola di permukaan planet. Faktor skala peta perlu diperhitungkan di dalam persamaan model dimanapun ketika gradien horisontal digunakan.

4. Skema Dinamik
Persamaan model dinamik dan diskretisasi numerik dikembangkan oleh Grell (Grell, dkk., 1994).

Persamaan Momentum Horisontal

\[
\frac{\partial p^* u}{\partial t} = -m^2 \left(\frac{\partial p^* uu/m}{\partial x} + \frac{\partial p^* vu/m}{\partial y} \right) - \frac{\partial p^* u \dot{\sigma}}{\partial \sigma}
- mp^* \left[\frac{RT_v}{(p^* + pl/\sigma)} \frac{\partial p^*}{\partial x} + \frac{\partial \phi}{\partial x} \right] + fp^* v + F_H u + F_v u,
\]

\[
\frac{\partial p^* v}{\partial t} = -m^2 \left(\frac{\partial p^* uv/m}{\partial x} + \frac{\partial p^* vv/m}{\partial y} \right) - \frac{\partial p^* v \dot{\sigma}}{\partial \sigma}
- mp^* \left[\frac{RT_v}{(p^* + pl/\sigma)} \frac{\partial p^*}{\partial y} + \frac{\partial \phi}{\partial y} \right] + fp^* u + F_H v + F_v v.
\]

Dengan u merupakan komponen kecepatan timur-barat, v komponen utara-selatan, T_v adalah temperatur virtual, \(\phi \) ketinggian geoptensial, f parameter koriolis, R konstanta gas untuk udara kering, m adalah faktor skala peta Stereografik, Lambert Konformal, dan Mercator, \(\dot{\sigma} = \frac{\partial \sigma}{\partial t} \), dan F_H, dan F_v menunjukkan pengaruh difusi horisontal dan vertikal dengan p^* = p_s - p_t.

Persamaan kontinuitas dan Sigmadot (\(\dot{\sigma} \))

\[
\frac{\partial p^*}{\partial t} = -m^2 \left(\frac{\partial p^* u/m}{\partial x} + \frac{\partial p^* v/m}{\partial y} \right) - \frac{\partial p^* \dot{\sigma}}{\partial \sigma}.
\]
Persamaan integral vertikal 4 digunakan untuk menghitung variasi temporal tekanan permukaan dalam model,

\[
\frac{\partial p^*}{\partial t} = -m^2 \int_0^1 \left(\frac{\partial p^* u/m}{\partial x} + \frac{\partial p^* v/m}{\partial y} \right) d\sigma.
\]

Setelah perhitungan kecenderungan tekanan-permukaan, \(\frac{\partial p^*}{\partial t}\) kecepatan vertikal dalam koordinat (\(\dot{\sigma}\)) dihitung pada tiap level dalam model dengan integral vertikal dari Persamaan 4.

\[
\dot{\sigma} = -\frac{1}{p^*} \int_0^\sigma \left[\frac{\partial p^*}{\partial t} + m^2 \left(\frac{\partial p^* u/m}{\partial x} + \frac{\partial p^* v/m}{\partial y} \right) \right] d\sigma,
\]

Dimana \(\dot{\sigma}\) merupakan variable dummy integrasi dan \(\sigma (\sigma = 0) = 0\)

Persamaan termodinamika dan Omega (\(\omega\))

Persamaan termodinamika adalah

\[
\frac{\partial p^* T}{\partial t} = -m^2 \left(\frac{\partial p^* u T/m}{\partial x} + \frac{\partial p^* v T/m}{\partial y} \right) - \frac{\partial p^* T \dot{\sigma}}{\partial \sigma} + \frac{RT_v \omega}{c_{pm}(\sigma + P_i/P_{ast})} + \frac{p^* Q}{c_{pm}} + F_H T + F_v T,
\]

Dengan \(c_{pm}\) adalah kapasitas panas untuk uap air pada tekanan konstan, \(Q\) pemanasan adiabatik, \(F_H T\) menunjukkan efek difusi horizontal, \(F_v T\) menunjukkan efek pencampuran vertikal dan penyesuaian konvektif kering dan \(\omega\) adalah

\[
\omega = p^* \dot{\sigma} + \sigma \frac{dp^*}{dt},
\]

Dengan,

\[
\frac{dp^*}{dt} = \frac{\partial p^*}{\partial t} + m \left(u \frac{\partial p^*}{\partial x} + v \frac{\partial p^*}{\partial y} \right).
\]

Ekspresi untuk \(c_{pm} = c_p(1+0.8 q_v)\), dengan \(c_p\) adalah kapasitas panas untuk air kering pada tekanan konstan dan \(q_v\) adalah pencampuran rasio uap air.
Persamaan Hidrostatik

Persamaan hidrostatik digunakan untuk menghitung tinggi geopotensial dari temperature virtual T_v,

$$\frac{\partial \phi}{\partial \ln(\sigma + p_r/p^*)} = -RT_v \left[1 + \frac{q_c}{1 + q_v} \right]^{-1}$$

Dimana $T_v = T(1+0.608q_v)$, q_v, q_c, dan q_r adalah uap air, awan cair atau es, dan presipitasi atau salju dan rasio pencampuran.

5. Skema Fisik

a. Skema Radiasi

RegCM4 menggunakan skema radiasi NCAR CCM3, yang dijelaskan oleh Kiehl (Kiehl dkk., 1996). Secara singkat, komponen matahari, yang menghitung efek O_3, H_2O, CO_2 dan O_2 sesuai dengan aproksimasi δ-Eddington. Skema ini memasukkan 18 interval spektal dari 0.2 sampai 5 μm. Parameterisasi penghamburan dan absorpsi awan mengikuti skema Slingo (Slingo, 1989), dimana sifat-sifat optic droplet awan (peluruhan kedalaman optik, penghamburan single albedo, dan parameter asimetri) yang diekpresikan dalam liquid water content (LWC) awan dan radius efektif droplet. Ketika awan cumulus terbentuk, fraksi tutupan awan yang berbentuk grid point merupakan total tutupan untuk memperluas tingkat awan dasar menjadi level awan puncak (dihitung berdasarkan random overlap) yang merupakan fungsi spasi horizontal grid point. Ketebalan lapisan awan diasumsikan samadengan lapisan model, perbedaan kandungan air khususnya untuk awan menengah dan rendah.

b. Model Permukaan Tanah

Model permukaan tanah yang secara default digunakan dalam RegCM4 adalah BATS atau (Biosphere-Atmosphere Transfer Scheme). Model BATS adalah model paket permukaan tanah yang dirancang untuk menjelaskan peran vegetasi dan kelembapan tanah yang interaktif serta di modifikasi untuk proses pertukaran momentum permukaan, energi, dan

c. Skema Presipitasi
1. Skema Presipitasi Skala-Luas
 Skema kelembapan eksplisit subgrid, Subgrid Explicit Moisture Scheme (SUBEX), digunakan untuk mengatasi hasil awan nonkonvektif dan presipitasipada model. Ini adalah komponen baru dalam model. Nilai SUBEX untuk variabilitas subgrid dalam awan dengan menghubungkan rata-rata sel grid kelembaban relatif terhadap fraksi awan dan air awan mengikuti cara kerjanya Sundqvist (Sundqvist, dkk. 1989).

Fraksi sel grid tertutup oleh awan, FC, ditentukan oleh:

\[
FC = \sqrt{\frac{RH - RH_{\text{min}}}{RH_{\text{max}} - RH_{\text{min}}}}
\]

(11)
dimana \(RH_{\text{min}}\) adalah ambang kelembapan relative saat dimulainya pembentukan awan, dan \(RH_{\text{max}}\) adalah kelembapan relative saat unit FC tercapai. FC diasumsikan menjadi nol saat RH lebih kecil dari \(RH_{\text{min}}\) dan tak hingga saat RH lebih besar dari \(RH_{\text{max}}\).

Presipitasi \(P\) terbentuk saat kandungan air awan melebihi ambang konversi langsung \(Q^{th}\ c\) berdasar hubungan berikut:

\[
P = C_{\text{ppt}} \left(Q_c/FC - Q_{c^{th}} \right) FC
\]

(12)

dimana \(1/C_{\text{ppt}}\) dipertimbangkan dari waktu karakteristik dari droplet awan mana yang akan dikonversi menjadi tetes hujan. Ambang ditentukan dengan menskala nilai tengah kandungan air awan dengan persamaan:

\[
Q_{c^{th}} = C_{\text{acs}} 10^{-0.49 + 0.013 T}
\]

(13)

dengan \(T\) adalah temperatur dalam derajat Celcius, dan \(C_{\text{acs}}\) adalah faktor skala konversi langsung. Presipitasi diasumsikan jatuh secara cepat.

SUBEX juga mencakup perumusan sederhana untuk penambahan tetes hujan dan penguapan. Rumus untuk penambahan droplet awan oleh droplet jatuh hujan diperoleh dari Beheng (Beheng, 1994), yaitu:

\[
P_{\text{acc}} = C_{\text{acc}} Q P_{\text{sum}}
\]

(14)

dengan \(P_{\text{acc}}\) adalah jumlah penambahan air awan, \(C_{\text{acc}}\) adalah koefisien laju penambahan, dan \(P_{\text{sum}}\) adalah keseluruhan presipitasi dari jatuh hingga awan.

Penguapan presipitasi berdasar Sundqvist (Sundqvist, 1989) dihitung dengan:

\[
P_{\text{evap}} = C_{\text{evap}} (1 - RH) P_{\text{sum}}^{1/2}
\]

(15)
dengan p_{evap} adalah jumlah presipitasi yang diuapkan dan C_{evap} adalah koefisien laju. Penjelasan rinci tentang SUBEX dan daftar nilai parameternya merujuk pada Pal (Pal dkk. 2000).

2. Parameterisasi Flux Lautan

b. Zeng : Skema Zeng mendeskripsikan semua kondisi stabilitas dan kecepatan angin untuk menghitung tambahan flux pada variabilitas skala lapisan batas permukaan. Panas sensibel (SH), panas laten (LH) dan momentum (τ) flux antara permukaan laut dan atmosfer bawah dihitung menggunakan algoritma aerodinamik bulk.

\begin{equation}
\tau = \rho_a u_*^2 (u_x^2 + u_y^2)^{1/2} / u
\end{equation}

\begin{equation}
SH = -\rho_a C_p a u_* \theta_*
\end{equation}

\begin{equation}
LH = -\rho_a L_e u_* q_*
\end{equation}

dimana u_x dan u_y adalah rata-rata komponen angin, u_* adalah friksi kecepatan angin, θ_* adalah parameter skala temperatur, q_* adalah parameter skala kelembapan spesifik, ρ_a adalah densitas udara, $C_p a$ adalah panas spesifik udara, dan L_e adalah panas laten penguapan. Untuk penjelasan perhitungan parameter ini dapat dilihat pada Zeng (Zeng dkk, 1998).

3. Analisa Skema Temperatur Permukaan Laut
RegCM4 memiliki pilihan yang memungkinkan perhitungan temperatur permukaan laut sebagai variabel yang mengikuti skema Zeng.
(Zeng, 2005). Hal ini mengikuti tampilan realistis dari temperatur permukaan laut, berdasarkan flux permukaan pada interaksi udara-laut. Skema didasarkan pada model dua lapis yang dijelaskan oleh Fairall. Temperatur pada kedua lapisan dihitung menggunakan persamaan transfer panas satu dimensi dan kondisi batas ditentukan oleh flux permukaan hingga atmosfer (laten, sensibel, dan radiatif) dan ketinggian temperatur permukaan pada 3 m diambil perhitungan SST.

4. Skema Gradien Tekanan

Dua pilihan tersedia untuk menghitung gaya gradien tekanan. Cara yang biasa dilakukan adalah menggunakan keseluruhan wilayah. Cara lain adalah dengan skema pengurangan hidrostatik yang mengakibatkan gangguan temperatur. Pada skema ini dilakukan penghalusan pada bagian atas untuk mengurangi error yang diakibatkan oleh perhitungan PGF.

5. Model Danau

Model danau yang dibuat oleh Hostetler (Hostetler dkk, 1993) dapat dipasangkan secara interaktif dengan model atmosfer. Pada model danau, flux pans, kelembapan dan momentum dihitung berdasar input meteorologi dan temperatur permukaan danau serta albedo. Panas dipindahkan secara vertikal antara lapisan model danau karena eddy dan percampuran konvektif. Es dan salju dapat menutupi sebagian atau keseluruhan permukaan danau. Pada model danau, persamaan analisa untuk temperatur adalah:

\[\frac{\partial T}{\partial t} = (k_e + k_m) \frac{\partial^2 T}{\partial z^2} \]

dimana T adalah temperatur lapisan danau, k_e dan k_m adalah eddy dan perpindahan molekular. Parameterisasi Henderson-Sellers digunakan untuk menghitung ke dan km diatur dengan nilai konstan 39x10^{-7} m^2 s^{-1} kecuali di bawah es dan di titik terdalam pada danau. Flux panas sentinel dan laten dari danau dihitung menggunakan parameterisasi BATS
Formulasi aerodinamik bulk untuk flux panas \(F_a \) dan flux panas sensibel \(F_s \) adalah sebagai berikut:

\[
F_q = \rho_a C_D V_a (q_s - q_a) \tag{20}
\]

\[
F_s = \rho_a C_p C_D V_a (T_s - T_a) \tag{21}
\]

6. Aerosol dan Debu (Model Kimia)

4.3 Keluaran GRK Dalam Model RegCM4

Keluaran RegCM4 yang dapat di identifikasikan sebagai GRK terdapat dalam file radiasi. File radiasi ini terdiri 14 parameter seperti yang ditunjukkan Tabel 4.1.

Tabel 4.1. Parameter RegCM4 Parameter Radiasi

<table>
<thead>
<tr>
<th>Lambang</th>
<th>deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>cld</td>
<td>cloud fractional cover</td>
</tr>
<tr>
<td>clwp</td>
<td>cloud liquid water path</td>
</tr>
<tr>
<td>qrs</td>
<td>solar heating rate</td>
</tr>
<tr>
<td>qrl</td>
<td>longwave cooling rate</td>
</tr>
<tr>
<td>frsa</td>
<td>surface absorbed solar flux</td>
</tr>
<tr>
<td>clrst</td>
<td>clearsky total column abs solar flux</td>
</tr>
<tr>
<td>clrss</td>
<td>clearsky surface absorbed solar flux</td>
</tr>
<tr>
<td>clrlt</td>
<td>clearsky net upward LW flux at TOA</td>
</tr>
<tr>
<td>clrls</td>
<td>clearsky LW cooling at surface (W/m²)</td>
</tr>
<tr>
<td>solin</td>
<td>instantaneous incident solar (W/m²)</td>
</tr>
<tr>
<td>sabtp</td>
<td>total column absorbed solar flux W/m</td>
</tr>
<tr>
<td>firtp</td>
<td>net upward LW flux at TOA (W/m²)</td>
</tr>
<tr>
<td>psa</td>
<td>Surface pressure (hPa)</td>
</tr>
</tbody>
</table>

Salah satu parameter GRK yang penting adalah uap air. Uap air adalah gas rumah kaca yang timbul secara alami dan bertanggungjawab terhadap sebagian besar dari efek rumah kaca. Konsentrasinya uap air berfluktuasi secara regional, dan aktivitas manusia tidak secara langsung memengaruhi konsentrasinya uap air kecuali pada skala lokal. Dalam model iklim, meningkatnya temperatur atmosfer yang disebabkan efek rumah kaca akibat gas-gas antropogenik akan menyebabkan meningkatnya kandungan uap air di troposfer, dengan kelembapan relatif yang agak
konstan. Uap air yang mencapai atmosfer akibat penguapan air dari laut, danau dan sungai. Model RegCM4 mengeluarkan parameter GRK yang berupa uap air adalah clwp (cloud liquid water path).

Sebagai bahan analisis dilakukan perbandingan antara tiap bulan yang mewakili masing-masing Januari, April, Juli, Oktober untuk mewakili
Desember-Januari-Februari (DJF), Maret-April-Mei (MAM), Juni-Julai-Agustus (JJA) dan September-Oktober-November (SON). Perbedaan yang terjadi di bulan Januari terletak di sekitar kota Jambi hal ini terjadi karena perubahan land use terjadi secara signifikan di sekitar daerah tersebut (Gambar 4.3). Jika dibandingkan dengan bulan April (Gambar 4.4) juga menampilkan hal yang sama yaitu terjadi perbedaan terutama di daerah sekitar kota Jambi. Perbedaan yang lebih besar dengan distribusi yang lebih luas terjadi pada bulan Juli (Gambar 4.5).

Perbedaan yang besar ini disebabkan terjadi perbedaan yang sangat kuat dalam pembentukan uap air di atmosfer. Juli yang mewakili JJA sebagai bulan musim panas di BBU dan musim kemarau di Indonesia mengindikasikan perbedaan tersebut.

Gambar 4.7. Perbedaan konsentrasi uap air DJF akibat perubahan land use tahun 2010 dengan land use tahun 2000 menggunakan model RegCM4

Perbedaan yang semakin rendah terjadi pada bulan Oktober yang mewakili musim SON. Untuk analisis lebih mendalam maka harus dilakukan rata-rata perbedaan musiman yaitu rata-rata perbedaan uap air selama tiga bulan DJF, MAM, JJA dan SON. Perbedaan selama DJF ditunjukkan Gambar 4.7 yang mewakili musim hujan dan JJA (Gambar 4.8) yang mewakili musim kemarau di Indonesia. Hasilnya terlihat bahwa terjadi perbedaan yang lebih besar pada DJF disbanding JJA. Jadi jika dibandingkan musim hujan (DJF) antara tahun 2000 dan 2010 memiliki perbedaan yang sangat besar dibanding pada musim kemarau (JJA). Hal tersebut mengindikasikan bahwa saat musim hujan terdapat uap air yang sangat besar yang merupakan bahan potensi untuk terjadi curah hujan. Uap air yang sangat besar tersebut terutama terdapat di daerah perairan khususnya sebelah barat Sumatera. Sedangkan pada musim kemarau uap air yang terbentuk untuk terjadinya curah hujan tidak sebanyak yang terjadi selama musim hujan dan perubahan land use antara tahun 2000 dan 2010 juga tidak signifikan dalam pembentukan uap air.
Gambar 4.8. Perbedaan konsentrasi uap air JJA akibat perubahan land use tahun 2010 dengan land use tahun 2000 menggunakan model RegCM4

Selanjutnya adalah menganalisis perbedaan uap air rata-rata tahunan antara tahun 2010 dan 2000 (Gambar 4.9). Dalam Gambar 4.9 tersebut menunjukkan bahwa perbedaan uap air terjadi umumnya di daerah perairan sedangkan di darat perbedaan terjadi akibat perubahan land use yang signifikan. Perbedaan uap air yang sangat besar terjadi di lautan merupakan konsekuensi bahwa laut sebagai penyumbang terbesar terjadinya uap air di atmosfer yang bertujuan terbentuknya hujan disuatu daerah.

Gambar 4.9. Perbedaan konsentrasi rata-rata uap air akibat perubahan land use tahun 2010 dengan land use tahun 2000 menggunakan model RegCM4

4.4 Simulasi GRK Dalam Model TAPM
4.4.1. Deskripsi Model CCAM

CCAM (Cubic Conformal Atmospheric Model) merupakan model numerik atmosfer terbaru yang dikembangkan CSIRO (Commonwealth Scientific and Industrial Research Organization) Australia, yang sebelumnya menggunakan DARLAM. CCAM merupakan variable-resolution global model, yaitu model global yang dapat memiliki resolusi yang bervariasi di setiap bagian muka bumi, dalam hal ini bergantung pada pusat koordinat stretching dan faktor Schmidt yang dipilih pada saat menjalankan (running) model. Karena CCAM merupakan global model, maka CCAM tidak bergantung pada boundary condition (syarat batas) dan hanya bergantung pada initial condition (kondisi awal). Sistem operasi

Gambar 4.11. Peta Land Use Propinsi Jambi Tahun 2010
yang digunakan oleh PC Cluster ini adalah linux. Beberapa fitur dari model ini di antaranya adalah:
- Untuk prakiraan regional, model ini menggunakan transformasi Schmidt.
- Untuk teknik downscaling, model ini menggunakan teknik multi nesting.
- Model ini menggunakan data topografi dan data land use.

Merupakan variable-resolution global model, yaitu model global yang memiliki resolusi yang bervariasi ditiap bagian globe (bergantung pada pusat koordinat dan faktor schmidt yang dipilih). Karena merupakan global model, maka CCAM tidak bergantung pada boundary condition (syarat batas) dan hanya bergantung pada initial condition (kondisi awal). CCAM menggunakan Conformal-Cubic Grid. Biasanya setiap sisi memiliki 48x48 grid poin (untuk format C48 grid) dan 18 vertikal sigma level (jumlah poin = 48x48x6x18). Conformal Cubic merupakan transformasi untuk mengubah bentuk permukaan bumi yang berbentuk bola menjadi kubus. Selanjutnya bentuk kubus hasil transformasi digunakan dalam perhitungan model. Hasil pemodelan yang didapatkan selanjutnya diubah kembali menjadi bentuk bola.

Model global CCAM memiliki beberapa kelebihan, diantaranya adalah:
- Tidak ada titik-titik singular, seperti pada kutub - kutub utara dan selatan
- Tidak ada boundary condition, karena CCAM adalah global model
- Grid dapat di-stretch untuk prakiraan resolusi tinggi (sampai 1 km)
- Grid yang di-stretch dapat di posisikan di setiap bagian dunia

untuk downscaling. Dalam penelitian ini, CCAM menggunakan Conformal Cubic Grid yang setiap panel memiliki 48x48 grid poin (format C48 grid) dan 18 level vertikal sigma (jumlah titik grid = 48x48x6x18 = 248832). Untuk lebih jelas, perhatikan gambar 4.12 dan tabel 4.2.

Gambar 4.12. Conformal Cubic Grid pada CCAM

Tabel 4.2. Tabel daftar sigma level dan ketinggian CCAM

<table>
<thead>
<tr>
<th>No</th>
<th>Sigma level</th>
<th>Ketinggian rata-rata (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.996</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>0.978</td>
<td>190</td>
</tr>
<tr>
<td>4</td>
<td>0.946</td>
<td>470</td>
</tr>
<tr>
<td>5</td>
<td>0.900</td>
<td>880</td>
</tr>
<tr>
<td>6</td>
<td>0.843</td>
<td>1.400</td>
</tr>
<tr>
<td>7</td>
<td>0.776</td>
<td>2.100</td>
</tr>
<tr>
<td>8</td>
<td>0.702</td>
<td>2.900</td>
</tr>
<tr>
<td>9</td>
<td>0.623</td>
<td>3.800</td>
</tr>
<tr>
<td>10</td>
<td>0.542</td>
<td>4.900</td>
</tr>
<tr>
<td>11</td>
<td>0.459</td>
<td>6.200</td>
</tr>
<tr>
<td>12</td>
<td>0.377</td>
<td>7.600</td>
</tr>
<tr>
<td>13</td>
<td>0.298</td>
<td>9.200</td>
</tr>
<tr>
<td>14</td>
<td>0.224</td>
<td>11.000</td>
</tr>
<tr>
<td>15</td>
<td>0.157</td>
<td>13.000</td>
</tr>
<tr>
<td>16</td>
<td>0.100</td>
<td>16.000</td>
</tr>
<tr>
<td>17</td>
<td>0.054</td>
<td>20.000</td>
</tr>
<tr>
<td>18</td>
<td>0.022</td>
<td>26.000</td>
</tr>
<tr>
<td>19</td>
<td>0.005</td>
<td>35.000</td>
</tr>
</tbody>
</table>
Dengan digunakan sistem koordinat yang bisa mulur (stretching), CCAM dapat sekaligus digunakan sebagai model prediksi global sekaligus model regional. Hal ini merupakan kelebihan CCAM dibandingkan model global lain pada umumnya.

4.4.2. DESKRIPSI MODEL TAPM

TAPM (The Air Pollution Model) merupakan pemodelan meteorologi dan penyebaran polusi berdasar perhitungan numerik parameter. TAPM merupakan produk berlisensi dari CSIRO Atmospheric Research Australia. TAPM merupakan aplikasi di sistem operasi windows (exe). Berbeda dengan CCAM, TAPM dapat dijalankan pada sebuah PC tunggal. Dalam melakukan pemodelan, TAPM menggunakan data-data:

- **Database bentuk permukaan tanah**
 Ketinggian global tanah setiap 1 km², didapat dari US Geological Survey, Earth Resource Observation System, Data Center Distributed Active Archive Center.
- **Vegetasi dan tipe tanah**
 Karakteristik daratan setiap 1 km², didapat dari *US Geological Survey, Earth Resource Observation System, Data Center Distributed Active Archive Center.*

- **Suhu permukaan laut**
 Rata-rata bulanan suhu permukaan laut setiap 1 km², didapat dari *US National Center for Atmospheric Research (NCAR).*

- **Analisa sinoptik meteorologi**
 Analisa sinoptik setiap 6 jam setiap 75 s/d 100 km², didapat dari analisa *LAPS atau GASP Bureau of Meteorology Australia.*

Disebabkan bentuk permukaan bumi yang melengkung, maka TAPM memiliki beberapa batasan:
- Analisa optimum diperoleh untuk luas area horizontal di bawah 1000 x 1000 kilometer.
- Analisa optimum diperoleh untuk ketinggian atmosfer di bawah 5000 meter dan dibatasi hingga 8000 meter.
- TAPM kurang sesuai untuk daerah dengan kemiringan yang curam / memiliki perbedaan ketinggian yang besar.

Selain itu, peta yang digunakan TAPM adalah *base map default,* tidak dapat diganti dengan tipe peta yang lain seperti peta administratif. Pada awalnya, data-data input TAPM disuplai oleh CSIRO - Australia, dan data tersebut disimpan dalam CD. Data tersebut merupakan kumpulan file - file sinoptik parameter-parameter seperti yang telah disebutkan di atas dengan skala waktu harian. Setelah Puslitbang - BMKG menggunakan CCAM untuk pemodelan cuaca dan iklim global, maka data output CCAM dapat dikonversi menjadi data input TAPM.

Gambar 4.15. Sebaran Sulfur Dioksida pada tanggal 4 - 8 November 2010 (Ozone Monitoring Instrument OMI - NASA)

Sebaran polusi udara berupa gas dan partikel dari pengamatan (Gambar 4.14 dan 4.15) serta dari hasil model TAPM. Hasil pemodelan ini dapat dijadikan sebagai analisis, prediksi serta kegiatan operasional dalam bidang kualitas udara.
Gambar 4.16 Dispersi debu Merapi pada tanggal 06 - 09 November 2010 (TAPM)
5.1 Alat-Alat Pengukuran GRK

Pengamatan GRK di Indonesia khususnya di Puslitbang BMKG telah banyak dilakukan secara mobile di beberapa daerah penelitian. Alat ukur yang digunakan adalah *Air Quality Monitoring 60* (AQM60). Alat AQM 60 (*Air Quality Monitoring*) digunakan untuk memonitor 4 (empat) jenis konsentrasi udara, yaitu CO (*Carbon monoxide*), NOx (*Nitrogen oxide*), SO$_2$ (*Sulfur dioxide*), dan O$_3$ (*ozon*).

Gambar 5.1. AQM dengan masing-masing fungsinya.
Gambar 5.2. Keluaran hasil pengamatan AQM berupa CO (Carbon monoxide), NOx (Nitrogen oxide), SO$_2$(Sulfur dioxide), dan O$_3$ (ozon).

Pengamatan GRK di Indonesia telah dilakukan dibeberapa daerah di Indonesia dengan menggunakan AQM60. Pengamatan ini dilakukan pada GRK yang tidak langsung yaitu gas yang SO$_2$, NOx, CO and NMVOC. Sedangkan GRK lainnya Carbon dioxide (CO$_2$), Methane (CH$_4$), Nitrous oxide (N$_2$O), Perfluorocarbons (PFC$_3$),

Hydrofluorocarbons (HFC$_3$), Sulphur hexafluoride (SF$_6$) merupakan GRK langsung yang masih relatif sulit untuk diukur secara langsung.

Pengukuran dengan menggunakan AQM ini bertujuan untuk mengetahui kondisi GRK di daerah pengamatan.

Obyek yang menjadi pengamatan adalah Pertamina di wilayah Balongan.
3. Gerbang Tol Cikampek, dilaksanakan pada tanggal 7 - 9 September 2010 (arus mudik lebaran).

Balongan

Pengamatan GRK di Balongan dilakukan di sekitar Balongan, Indramayu pada 14-16 April 2010 dengan lokasi pengamatan ditunjukkan Gambar 5.3.

Cikampek

- Lokasi survey di Gerbang Tol Cikampek (Gambar 5.4)
- Tahap 1, tanggal 3 - 5 September 2009 (Arus Normal)
- Tahap 2, tanggal 16 - 19 September 2009 (Arus Mudik)
- Tahap 3, tanggal 24 - 27 September 2009 (Arus Balik)

Gambar 5.3. Lokasi pengamatan GRK di Balongan, Indramayu menggunakan AQM60
Gambar 5.4. (a) Lokasi survey di gerbang Tol Cikampek dan (b) hasil pengamatan berupa NO2

Suralaya

Pengamatan GRK di Suralaya dilakukan di sekitar PLTU Suralaya, Merak, Jawa Barat pada tanggal 4 - 7 Agustus 2010 dengan lokasi pengamatan ditunjukkan Gambar 5.3.
Gambar 5.5. Lokasi pengamatan GRK PLTU Suralaya Merak, Jawa Barat

5.2 Stasiun Pemantau Gaw Bukit Kototabang

Stasiun Pemantau Atmosfer Global Bukit Kototabang (*Global Atmosphere Watch*) terletak di pulau Sumatera, Indonesia (0° 12’ 07” LS - 100° 19’ 05” BT, Gambar 5.6). Stasiun ini berjarak 17 km arah Utara kota Bukittinggi dan lebih kurang 120 km Utara kota Padang yang merupakan ibukota provinsi Sumatera Barat. Stasiun yang berada di area terpencil ini terletak di daerah ekuatorial pada ketinggian 864,5 m di atas permukaan laut dan 40 km dari garis pantai bagian Barat. Arah angin berasal dari Selatan-Tenggara (Desember sampai Mei) atau Utara-Barat Laut (Mei sampai Oktober). Temperatur bervariasi dari 16 sampai 25°C dengan variasi yang sangat kecil dan kelembapan relatif biasanya lebih dari 80%. Fasilitas yang tersedia meliputi bangunan yang cukup luas yang menyediakan ruang kantor, ruang rapat, dan laboratorium. Di area atap seluas 300 m², inlet udara dan beberapa peralatan radiasi dan meteorologi dipasang. Stasiun ini dapat dicapai dari jalan kecil yang tertutup untuk

Ada tiga program pengamatan yang dilakukan di Stasiun Pemantau Atmosfer Global Bukit Kototabang, yaitu :
1. Pengamatan Gas Rumah Kaca
2. Pengamatan Kualitas Udara
3. Parameter Fisis Atmosfer

Gambar 5.6. Stasiun Pemantau Atmosfer Global Bukit Kototabang
1. Pengamatan Gas Rumah Kaca

Secara alami, atmosfer kita mengandung beberapa gas yang dikelompokkan sebagai gas rumah kaca. Gas-gas tersebut menyebabkan efek yang disebut dengan efek rumah kaca yang dapat menjaga bumi tetap hangat sehingga cocok untuk tempat tinggal makhluk hidup. Akan tetapi, aktivitas manusia setelah era revolusi industri menyebabkan perubahan perubahan pada komposisi alami gas rumah kaca di atmosfer. Konsentrasi gas rumah kaca yang berlebih menyebabkan semakin banyak panas yang diserap oleh atmosfer dan menyebabkan peningkatan suhu udara di bumi atau yang kita kenal sebagai pemanasan global.

2. Pengamatan Kualitas Udara

Secara umum, kualitas udara diukur dengan mengamati apakah konsentrasi parameter pencemaran udara yang terukur lebih tinggi atau lebih rendah daripada Indeks Standar Pencemaran Udara (ISPU). Pemerintah menetapkan nilai ISPU untuk menjaga kesehatan dan kenyamanan masyarakat. Walaupun pemerintah telah menetapkan ISPU, ada beberapa kelompok orang yang masih rentan terhadap pencemaran udara, seperti anak-anak, lansia, penderita penyakit paru-paru dan jantung, yang akan terpengaruh oleh pencemaran udara lebih dahulu walaupun konsentrasi pencemaran udara yang terukur masih lebih rendah daripada ISPU. Ada 5 komponen pencemar udara yang dimasukkan dalam

3. Parameter Fisis Atmosfer

Gambar 5.7. Perbandingan Trend konsentrasi CO₂ Global (garis biru), Mauna Loa (garis merah) dan Stasiun GAW Bukit Kototabang (garis hijau)

Pengukuran dengan menggunakan metode CRDS ini dilakukan pada 3 level ketinggian yaitu 10 meter, 20 meter dan 32 meter. Hasil pengukuran konsentrasi CO₂ dan CH₄ hingga bulan Mei 2012 di Stasiun GAW Bukit Kototabang dapat dilihat pada Gambar 5.8 dan 5.9.
Gambar 5.8. Trend Konsentrasi CO₂ periode Januari 2004- Mei 2012 di Stasiun GAW Bukit Kototabang

Pada bulan Mei 2012, konsentrasi CO$_2$ di Stasiun GAW Bukit Kototabang tercatat sebesar 383,5 ppm. Hasil ini relatif sedikit lebih rendah dibandingkan rata-rata nilai konsentrasi CO$_2$ pada bulan April 2012 yang sebesar 384,2 ppm. Namun jika dibandingkan nilai rata-rata sejak pengukuran tahun 2004 (379 ppm), nilai konsentrasi CO$_2$ pada bulan Mei 2012 mengalami peningkatan sebesar 1,19%.

Konsentrasi CH$_4$ pada bulan Mei 2012 sebesar 1779,3 ppb, dimana nilai tersebut menunjukkan penurunan jika dibandingkan dengan nilai konsentrasi pada bulan April 2012 yang menunjukkan nilai 1805,8 ppb. Nilai rata-rata konsentrasi CH$_4$ sejak dilakukan pengamatan tahun 2004 hingga saat ini adalah sebesar 1814,7 ppb, sehingga dengan demikian nilai konsentrasi CH$_4$ pada bulan Mei 2012 menurun sebesar 1,95% dibandingkan normalnya.

4. Peralatan Pengamatan GRK

Gambar 5.10. Ozone Analyzer type TEI 49C dan Ozone Calibrator TEI 49 PS sebagai kalibrator

Pengamatan ozon permukaan di Stasiun Pemantau Atmosfer Global Bukit Kototabang telah dimulai sejak September 1996. Instrumen yang
digunakan adalah Ozone Analyzer type TEI 49C dan Ozone Calibrator TEI 49 PS sebagai kalibrator (GambAR 5.10). Mulai September 2006, instrumen pengamatan ozon ditambah dengan Ozone Analyzer type 49C, bantuan WMO-WCC EMPA, Swiss.

Gambar 5.12. CO₂-CH₄-H₂O Analyzer Picarro Model G1301 untuk pemantauan GRK: Karbon Dioksida-Metana

Gambar 5.13. SO₂ Analyzer Thermo Scientific Model 43i Trace Level untuk pengamatan konsentrasi sulfur dioksida di Bukit Kototabang
Gambar 5.14. Analyzer Thermo Scientific Model 42i Trace Level Enhanced untuk pengamatan konsentrasi oksida nitrogen di Bukit Kototabang

Gambar 5.15. Karbondioksida GMP 343

Gambar 5.16. Alat ECOM AC

Alat ini digunakan untuk perawatan serta trouble shooting dari suatu sistem pembakaran. Pengamatan Data rerata bulanan konsentrasi gas CO₂ yang terukur di Bukit Kototabang. Daerah hijau merupakan batas ±σ dari setiap nilai. Garis merah menandakan kecenderungan konsentrasi

Selanjutnya pengamatan gas metana (CH$_4$) menunjukkan hal yang sama tetapi dengan tingkat kenaikan yang lebih rendah dibanding CO$_2$. Konsentrasi tertinggi dicapai pada tahun 2005 sebesar 1900 ppb sedangkan pada tahun 2010 mencapai 1870 ppb (Gambar 5.19). Kenaikan yang lebih tinggi terjadi pada kenaikan konsentrasi N$_2$O dengan konsentrasi mencapai 324,5 ppb dibanding kenaikan CO$_2$ (Gambar 5.19). Analisis lebih lanjut dapat dilakukan untuk melihat kenaikan N$_2$O yang sangat tinggi dibanding konsentrasi GRK lainnya.

Konsentrasi GRK berupa SF$_6$ (Gambar 5.20) yang terukur menunjukkan hal yang sama yaitu terdapat kenaikan yang mencapai 7.3 ppt pada tahun 2011. Beberapa parameter GRK tersebut menunjukkan hal yang sama yaitu terdapat kenaikan. Hal tersebut menunjukkan bahwa parameter GRK sesuai dengan pengamatan global yang menunjukkan kecenderungan kenaikan konsentrasi. Lebih jauh hal tersebut sesuai dengan kenyataan bahwa kenaikan konstrasi GRK akan menyebabkan peningkatan global yang selanjutnya menyebabkan perubahan iklim di dunia dan dalam skala local akan mempengaruhi Indonesia.

5.3 Pengamatan GRK oleh BMKG

Gambar 5.22. Konsentrasi ozon permukaan di GAW Kototabang pada Januari 2012

Konsentrasi ozon di Kemayoran lebih tinggi dibanding Kototabang hal tersebut terjadi karena Kemayoran merupakan kota besar yang tentunya proses-proses pembentukan ozon lebih banyak terjadi dibanding Kototabang yang berupa lokasi pengamatan. Pengambilan sampel pada bulan Januari dilakukan sebagai sampel untuk mewakili bulan musim hujan di Indonesia dan bulan Juli untuk mewakili bulan musim kemarau (Gambar 5.24).
Gambar 5.23. Konsentrasi ozon permukaan di Kemayoran pada Juli 2012

Gambar 5.24. Konsentrasi ozon permukaan di GAW Kototabang pada Juli 2012

Perbedaan konsentrasi pada masing-masing daerah pada bulan yang berbeda juga diakibatkan pengaruh meteorologi atau klimatologi yang menyebabkan konsentrasi ozon berbeda baik dari segi rata-rata konsentrasi maupun maksimum hariannya.

5.4 Pengamatan GRK Oleh Institusi Lain

Penelitian lapisan ozon di atas wilayah Indonesia dilakukan untuk memahami karakteristik ozon stratosfer dan troposfer dalam kaitannya dengan penipisan ozon dan pemanasan global. Ozon secara alamiah terbentuk melalui proses fotokimia, konsentrasi ozon terbesar sekitar 90% berada di stratosfer, yang berfungsi sebagai penyerap radiasi ultraviolet, sementara 10% berada di troposfer. Ozon permukaan adalah ozon troposfer pada ketinggian paling bawah di permukaan bumi. Di troposfer ozon bersifat sebagai gas rumah kaca sehingga dapat menyokong perubahan iklim. Pada konsentrasi tertentu ozon di permukaan dapat merupakan polutan yang bersifat racun pada tanaman, binatang maupun manusia. Untuk memonitor adanya penipisan lapisan ozon di Indonesia, LAPAN melakukan pengamatan intansitas radiasi UV-A (315 400nm) dan UV-B (280 - 315nm) sebagai salah satu indikator kuantitas konsentrasi ozon. Dari hasil pengukuran yang pernah dilakukan menunjukkan penurunan konsentrasi ozon sebesar 0,0097 DU atau sekitar 1,57% yang diperkuat dengan adanya kenaikan intensitas radiasi UV sebesar 1,3%
pada tahun 1995, walaupun sementara ini konsentrasinya masih dalam batas nilai tidak membahayakan. Peralatan yang dipergunakan dalam pengukuran tersebut adalah UV Pyranomete

Profil vertikal ozon dalam skala global sangat penting untuk diketahui. Ozon di stratosfer yang disebut dengan lapisan ozon berfungsi sebagai perisai pelindung bumi dari radiasi sinar UV yang berbahaya. Ozon berperan sebagai penyeimbang radiasi di troposfer atas dan stratosfer. Perubahan yang terjadi terhadap distribusi ozon pada kedua lapisan ini akan mengakibatkan perubahan gaya radiasi yang berpengaruh terhadap iklim di Bumi

Gambar 5.25. Rata-rata bulan profil ozon Indonesia (kiri) dan variasi musiman profil ozon (kanan) (sumber: MIRADOR).
Puncak nilai ozon pada 10 hPa yang merupakan lapisan stratosfer tengah tempat ozon diproduksi maksimum, sedangkan ozon minimum pada tekanan 100 hPa (stratosfer bawah) dan di atas 1 hPa (stratosfer atas) akibat proses penguraian ozon yang lebih banyak terjadi di stratosfer bawah karena reaksi fotolisis ozon oleh sinar UV dan di stratosfer atas akibat reaksi ozon dengan bahan perusak ozon (senyawa halogen) terutama ClO dan BrO.

Variasi musiman profil ozon Indonesia (Gambar 5.26, tengah) menunjukkan puncak ozon pada tekanan 10 hPa minimum pada bulan Juni-Juli-Agustus (JJA) 2006-2008 atau pada saat musim kemarau melanda Indonesia dengan konsentrasi 9 ppmv. Puncak ozon stratosfer maksimum terjadi pada bulan September-Oktober-November (SON) 2006-2008 dengan konsentrasi 10 ppmv saat musim peralihan dari musim kemarau menuju musim hujan. Saat musim kemarau intensitas matahari yang tinggi dan jumlah uap air yang minimum membuat ozon di troposfer meningkat, ternyata tidak demikian dengan ozon stratosfer. Hal ini mengindikasikan ada pengaruh lain yang mungkin lebih dominan yang menyebabkan ozon di stratosfer minimum justru saat musim kemarau bulan JJA.

Posisi matahari diperkirakan menjadi faktor lain yang dominan mempengaruhi ozon stratosfer di wilayah tropis (lintang kurang dari 15°). Saat bulan Juli, matahari bergerak menjauhi ekuator sehingga intensitas penyinaran matahari yang sangat menentukan dalam proses pembentukan ozon di Indonesia berkurang. Akibatnya, ozon di stratosfer lebih rendah pada bulan JJA. Saat bulan September, matahari mengalami ekinkos (matahari terletak persis di atas garis ekuator) sehingga intensitas penyinarannya yang tinggi membuat reaksi pembentukan ozon berjalan semakin cepat mengakibatkan puncak ozon di stratosfer lebih tinggi. Untuk mengetahui adanya indikasi perubahan lapisan ozon stratosfer di Indonesia terkait dengan kejadian penipisan ozon di Kutub, diperlukan analisis time series konsentrasi ozon pada lapisan stratosfer khususnya pada tekanan 20, 10, dan 2 hPa yang mewakili lapisan stratosfer bawah, stratosfer tengah, dan stratosfer atas.
Seperti telah dibahas sebelumnya bahwa reaksi ozon di stratosfer tengah lebih dominan reaksi pembentukannya dibandingkan reaksi penguraianya. Reaksi penguraian ozon di stratosfer bawah dominan disebabkan reaksi fotolisis ozon oleh sinar UV, sedangkan di stratosfer atas akibat reaksi ozon dengan radikal Cl dan Br.

Di Indonesia, ozon di stratosfer atas pada tekanan 2 hPa (Gambar 5.26, atas) menunjukkan kecenderungan penurunan sebesar -0.005 ppmv per bulan. Hal ini kemungkinan besar disebabkan reaksi penguraian ozon oleh senyawa radikal Cl dan Br di stratosfer atas di Indonesia lebih dominan dibandingkan pembentukannya. Time series ozon pada 2 hPa menunjukkan nilai konsentrasi ozon yang cenderung konstan setiap bulannya dengan konsentrasi ozon antara 4 hingga 6 ppmv.

Sebaliknya dengan fenomena ozon yang terjadi pada 2 hPa yang menunjukkan kecenderungan penurunan konsentrasi ozon sebesar -0.005 ppmv/bulan, pada tekanan 10 hPa (Gambar 5.26 tengah) atau lapisan stratosfer tengah tempat ozon diproduksi maksimum, time series ozon justru menunjukkan peningkatan yang sangat kecil sebesar 0.006 ppmv/bulan (Gambar 5.26 tengah). Time series ozon pada 10 hPa juga menunjukkan nilai-nilai minimum ozon pada bulan Juni atau Juli setiap tahunnya yang kemungkinan besar dipengaruhi oleh posisi matahari yang bergerak menjauhi ekuator pada bulan Juni-Juli. Konsentrasi ozon pada 10 hPa berada di antara 9 hingga 11 ppmv.

Pada tekanan 20 hPa (Gambar 5.26 bawah) konsentrasi ozon stratosfer di Indonesia mengalami penurunan kembali dari tahun 2006-2008 dengan nilai penurunan sama dengan penurunan pada tekanan 2 hPa sebesar -0.005 ppmv/bulan. Penurunan paling ekstrem terjadi pada bulan Februari 2007 dengan konsentrasi mencapai 6 ppmv. Hal ini kemungkinan disebabkan jumlah uap air di atmosfer meningkat pada bulan Februari akibat puncak musim hujan yang melanda wilayah Indonesia. Konsentrasi ozon pada 20 hPa berada di antara 6 hingga 7,5 ppmv.
Gambar 5.26. Time series konsentrasi ozon pada tekanan 2 hPa (atas), 10 hPa (tengah), dan 20 hPa (bawah) (MIRADOR)
Fenomena yang berbeda ini kemungkinan besar dipengaruhi oleh proses kimia dan fisika yang terjadi pada setiap lapisan berbeda antara lapisan stratosfer atas (2 hPa), stratosfer tengah saat ozon mencapai puncak (10 hPa), dan stratosfer bawah (20 hPa). Pada tekanan 2 hPa proses penguraian ozon oleh radikal Cl dan Br lebih dominan dibandingkan dengan reaksi pembentukan ozon, sehingga konsentrasi ozon cenderung menurun. Hal ini juga bisa menjadi indikasi penipisan ozon di Indonesia akibat bahan-bahan perusak ozon walaupun tidak signifikan seperti yang terjadi di wilayah Kutub.

Fenomena penurunan konsentrasi ozon di stratosfer bawah dan stratosfer atas akibat penguraian ozon oleh sinar UV dan radikal Cl dan Br, sesuai dengan teori yang telah dibahas sebelumnya. Begitu juga dengan fenomena peningkatan konsentrasi ozon pada 10 hPa atau stratosfer tengah akibat reaksi pembentukan ozon yang lebih dominan.

5.5 Data GRK Global

Emisi gas rumah kaca yang dikeluarkan oleh United Nations Framework Convention on Climate Change (UNFCC) terbagi menjadi memasukkan land use LULUCF dan non LULUCF. Analisis emisi gas rumah kaca ini digunakan untuk analisis perubahan iklim sebab dengan tingginya emisi gas rumah kaca maka dapat dipastikan akan meningkatkan pemanasan global yang pada akhirnya menyebabkan
perubahan iklim. Gambar 5.27 menunjukkan emisi GRK tanpa memasukkan parameter LULUCF dan memasukkan LULUCF (Gambar 5.28). Analisis terpisah emisi GRK dengan menggunakan LULUCF dan non LULUCF dilakukan karena pengaruh LULUCF sangat besar dalam menentukan besarnya emisi GRK di tiap negara.

Gambar 5.27. Time series emisi GRK dengan non unsur LULUCF (UNFCCC)

Gambar 5.28. Time series emisi GRK dengan unsur LULUCF

Sehingga analisis lebih detail dari tiap negara harus dilakukan untuk memahami antisipasi emisi GRK yang dikeluarkan dari beberapa sektor. Detail perubahan emisi GRK dari tiap negara yang tidak memasukkan
LULUCF (Gambar 5.29) dan memasukkan LULUCF (Gambar 5.30). Perubahan emisi yang terjadi dibebapera negara yang diumumkan oleh UNFCCC dalam gambar 5.29 dan 5.30 mengindikasikan seberapa besar tiap-tiap negara berupaya untuk mengurangi emisi GRK.

Gambar 5.29. Perubahan emisi GRK dibebapera Negara yang memasukan tanpa LULUCF (UNFCCC)
Gambar 5.30. Perubahan emisi GRK dibersama Negara yang memasukan unsur LULUCF (UNFCCC)

5.6 Kondisi GRK Dan Aspek Lainnya

Karbon dioksida (rumus kimia: CO\(_2\)) atau zat asam arang adalah sejenis senyawa kimia yang terdiri dari dua atom oksigen yang terikat secara kovalen dengan sebuah atom karbon. Ia berbentuk gas pada keadaan temperatur dan tekanan standar dan hadir di atmosfer bumi.

Karbon dioksida di atmosfer bumi dianggap sebagai gas kelumit dengan konsentrasi sekitar 385 ppm berdasarkan volume dan 582 ppm
berdasarkan massa. Massa atmosfer bumi adalah 5.14×10^{18} kg, sehingga massa total karbon dioksida atmosfer adalah 3.0×10^{15} kg (3.000 gigaton). Konsentrasi karbon dioksida bervariasi secara musiman. Di wilayah perkotaan, konsentrasi karbon dioksida secara umum lebih tinggi, sedangkan di ruangan tertutup, ia dapat mencapai 10 kali lebih besar dari konsentrasi di atmosfer terbuka.

Gambar 5.32 adalah konsentrasi karbondioksida di ketinggian 500mbar (5 Km) di atas wilayah Indonesia. Data diambil dari satelit Aqua/AIRS. Gambar tersebut menunjukkan konsentrasi CO$_2$ di Wilayah Indonesia dengan menggunakan bantuan satelit pada bulan Januari 2011 untuk menggambarkan kondisi musim hujan. Hasil itu dibandingkan dengan konsentrasi CO$_2$ pada bulan Agustus untuk mewakili musim kemarau. Hasil perbandingan menunjukkan bahwa secara umum konsentrasi CO$_2$ pada musim hujan lebih tinggi dibanding pada musim kemarau.

Gambar 5.31. Konsentrasi karbondioksida di ketinggian 500mbar (5 Km) diatas wilayah Indonesia pada bulan Januari 2011. Data diambil dari satelit Aqua/AIRS.
Gambar 5.32. Konsentrasi karbondioksida di ketinggian 500mbar (5 Km) diatas wilayah Indonesia pada bulan Agustus 2011. Data diambil dari satelit Aqua/AIRS.

Konsentrasi ozon di Indonesia pada bulan Januari 2005 juga ditunjukkan Gambar 5.33 sedangkan konsentrasi pada bulan Juli 2005 ditunjukkan Gambar 5.34.

Gambar 5.33. Konsentrasi ozon permukaan di wilayah Indonesia pada bulan Januari 2005
Gambar 5.34. Konsentrasi ozon permukaan di wilayah Indonesia pada bulan Juli 2005

Gambar 5.35. Konsentrasi ozon permukaan global pada bulan Januari 2005
Gambar 5.36. Konsentrasi ozon permukaan global pada bulan Juli 2005 (NASA)

Jika kita bandingkan kondisi yang sama dengan data global Januari 2005 (Gambar 5.35) dan Juli 2005 (Gambar 5.36) terlihat bahwa dalam data global konsentrasi ozon Indonesia tidak terlihat jelas. Sehingga proses *downscaling* data atau peningkatan resolusi mutlak diperlukan untuk mendapatkan data yang lebih akurat. Analisis selanjutnya bisa dilakukan dengan menggunakan data pengamatan yang lebih akurat dan detail seperti ditunjukkan data pengamatan di Watukosek (Gambar 5.37). Gambar 5.37 menunjukkan profil ozon, kelembapan, temperatur dalam satu grafik sehingga analisis konsentrasi ozon dapat dilakukan dengan lebih lengkap. Analisis selanjutnya dapat dilakukan dengan melihat trajektori ozon di berbagai ketinggian (Gambar 5.38).
Gambar 5.37. Profil konsentrasi ozon, kelembapan, temperatur di Watukosek pada 26 Januari 2011 (NASA)

Gambar 5.38. Trajektori ozon dalam berbagai ketinggian dengan sumber ozon dari Watukosek pada 26 Januari 2011 (NASA)

5.7 Proyeksi GRK

Kondisi GRK global dan Indonesia akan memengaruhi kondisi iklim dan pada akhirnya akan berpengaruh terhadap perubahan iklim. Analisis perubahan iklim memerlukan jangka waktu yang sangat panjang dan pengaruhnya yang terjadi dimasa datang sangat diperlukan untuk proses adaptasi dan mitigasi. Salah satu langkah yang bisa dilakukan adalah dengan melakukan proyeksi iklim. Proyeksi ini akan melakukan proyeksi terhadap beberapa parameter meteorologi atau klimatologi serta aspek yang terkait lainnya sehingga langkah-langkah untuk proses adaptasi dan mitigasi dapat dilakukan dengan tepat. Tabel 5.1 memperlihatkan bagaimana kondisi Indonesia dalam skenario IPCC untuk tahun 2000-2012 pada emisi SO₂ dan NOx. Pada Tabel 5.1 juga terlihat masing-masing perbandingan dari emisi yang digunakan yaitu Gas, minyak dan batubara. Emisi SO₂ yang terbesar terjadi pada batubara, kemudian minyak dan akhirnya gas sedangkan emisi NOx yang terbesar terjadi pada minyak bumi, batubara kemudian gas.

Tabel 5.1. Emisi Indonesia dalam skenario IPCC tahun 2000-2012

<table>
<thead>
<tr>
<th>Tipe Emisi</th>
<th>Gas</th>
<th>Minyak</th>
<th>Batubara</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ (kg/GJ)</td>
<td>0.0002</td>
<td>0.6820</td>
<td>1.3022</td>
</tr>
<tr>
<td>NOₓ (kg/GJ)</td>
<td>0.4433</td>
<td>1.2670</td>
<td>1.2527</td>
</tr>
</tbody>
</table>
Gambar 5.39 Proyeksi populasi penduduk Indonesia sampai tahun 2100

dikeluarkan saat peningkatan GDP atau pendapatan perkapita di Indonesia. Peningkatan GDP dan perkapita akan meningkatkan emisi GRK yang merupakan akibat proses untuk meningkatkan kesejahteraan, kenyamanan dan pemenuhan kebutuhan hidup sehari-hari.

Gambar 5.40. Proyeksi GDP Indonesia sampai tahun 2100 dalam trilyun dollar USA

Gambar 5.41. Proyeksi pendapatan perkapita Indonesia sampai tahun 2100 dalam dollar USA

Meningkatnya populasi, GDP dan pendapatan perkapita maka produksi energi di Indonesia akan meningkat. Struktur energi di Indonesia ditunjukkan oleh Gambar 5.42. Pemahaman struktur energi di Indonesia membantu bagaimana tiap sektor energi tersebut akan menyumbang emisi GRK.
Gambar 5.42. Struktur energi Indonesia

Gambar 5.43. Proyeksi penyerapan CO$_2$ energi angin di Indonesia sampai tahun 2050

Minyak bumi dan gas merupakan sektor energi terbesar di Indonesia yang digunakan sebagai sumber energi sehingga kedua sektor energi tersebutlah yang menyumbang GRK terbesar di Indonesia. Salah satu pemikiran lainnya untuk mengurangi emisi GRK adalah penggunaan sumber energi yang bisa menggantikan sumber energi fosil (Minyak, gas dan batubara). Sumber energi yang dapat digunakan salah satunya adalah energi angin. Penggunaan energi angin akan mengurangi emisi GRK khususnya CO$_2$ dan kita dapat juga memproyeksikan berapa Mt CO$_2$ per tahun dapat dikurangi ketika penggunaan energi angin dilakukan seperti yang ditunjukkan Gambar 5.44. Selain itu, penggunaan panas bumi juga
dapat dilakukan dan kemudian di proyeksikan penyerapan CO₂ pada masing-masing struktur energi antara lain gas, minyak dan batubara (Gambar 5.44).

Gambar 5.44. Proyeksi penyerapan CO₂ oleh energi panas bumi di Indonesia sampai tahun 2050

Gambar 5.45. Proyeksi emisi karbon Indonesia dari sektor energi dan deforestasi (Susandi, 2005)

Penggunaan panas bumi sebagai energi diproyeksikan akan menggantikan batubara, minyak dan gas dalam emisi GRK sehingga dengan penggunaan panas bumi emisi GRK dari sektor struktur energi dapat digantikan. Dalam Gambar 5.44 tersebut terlihat bahwa penggantian
CO₂ yang paling besar terjadi pada batubara kemudian minyak dan terakhir batubara. Pemahaman selanjutnya yang sangat penting adalah seberapa besar emisi karbon yang diproyeksikan oleh Indonesia karena emisi CO₂ merupakan bagian dari emisi karbon.

Gambar 5.46. Proyeksi emisi dan konsentrasi SO₂ Indonesia
Proyeksi emisi NO$_2$ di Indonesia dari berbagai sektor ditunjukkan Gambar 5.47 yang memproyeksikan emisi NO$_2$ sampai tahun 2100. Dalam proyeksi ini terlihat bahwa proyeksi emisi dari proses deforestasi sangat besar dan melebihi dari sektor energi. Emisi dari kedua sektor tersebut akan mencapai maksimum pada tahun 2060 dan kemudian menurun sampai tahun 2100. Dengan mengetahui proyeksi emisi karbon dari kedua sektor ini akan memudahkan untuk menganalisis langkah-langkah yang tepat untuk mengurangi emisi karbon yang pada akhirnya akan mengurangi GRK. Proyeksi dari tiap skenario utama IPCC yang digunakan untuk memproyeksikan emisi serta konsentrasi NO$_2$ ditunjukkan Gambar 5.47. Emisi dan konsentrasi tersebut akan bertambah dan mencapai maksimum pada tahun 2050 dan kemudian turun sampai tahun 2100. Proyeksi turunnya NO$_2$ dan konsentrasi NO$_2$ pada tahun 2050 terjadi pada semua skenario utama IPCC. Penurunan terbesar terjadi pada skenario A2 kemudian diikuti berturut-turut skenario B2, B1 dan A1B. Perbedaan proyeksi tersebut terjadi karena asumsi-asumsi yang digunakan berbeda khususnya dalam penggunaan sumber energi fosil, penggunaan teknologi dan pelestarian lingkungan hidup khususnya hutan sebagai penyerap GRK.

Gambar 5.47. Proyeksi emisi dan konsentrasi NO$_2$ Indonesia
Gambar 5.48. Proyeksi persentasi kematian dari populasi akibat konsentrasi SO$_2$ di Indonesia

Gambar 5.49. Proyeksi persentasi biaya kematian dari GDP akibat konsentrasi SO$_2$ di Indonesia

Akibat emisi GRK yang salah satunya GRK tidak langsung berupa SO$_2$ adalah proyeksi presentasi kematian penduduk dari total populasi (Gambar 5.48) yang diakibatkan kenaikan emisi SO$_2$. Proyeksi persentasi kematian sangat penting untuk melihat tingkat pertumbuhan penduduk dan total populasi Indonesia sehingga dapat diperoleh data-data lainnya dan
kebijakan yang dapat diambil akibat proyeksi ini salah satunya adalah menyiapkan infrastruktur kesehatan, pangan dan pemukiman untuk antisipasi proyeksi kematian penduduk akibat kenaikan emisi GRK berupa SO₂. Salah satunya adalah proyeksi dana atau biaya yang harus dikeluarkan akibat proyeksi kematian akibat kenaikan SO₂ (Gambar 5.49). Proyeksi presentasi biaya tersebut sangat penting untuk menentukan bagaimana dana yang harus sediakan untuk mendukung kebijakan pemerintah saat menentukan apakah skenario yang digunakan A1B, A2, B1 atau B2.

Gambar 5.50. Proyeksi persentasi kematian dari populasi akibat konsentrasi NO₂ Indonesia

Gambar 5.51. Emisi karbon Indonesia dari sektor energi dan deforestrasi
BAB 6
PERUBAHAN IKLIM DAN PALEOKLIMAT

6.1 Penelitian Paleoklimat

Sebagai salah satu negara di kawasan tropis yang memiliki lapisan es abadi sekaligus puncak tertinggi antara Kilimanjaro, Tanzania (5895 m dpl) dan Andes, Peru (6962 m dpl), Indonesia memiliki pegunungan Puncak Jaya (4884 m dpl) yang terletak di Provinsi Papua, dan merupakan lokasi satu-satunya yang terdapat gletser di wilayah “kolam hangat” ekuatorial Samudera Pasifik. Di dalamnya terkandung informasi sangat berharga mengenai perubahan iklim dan lingkungan di wilayah tersebut yang dipengaruhi siklus antar-tahunan El Niño-Southern Oscillation (ENSO) dan sistem monsun Austral-Asia, setidaknya untuk jangka waktu beberapa ratus tahun yang lalu atau bahkan mungkin lebih lama. Saat ini diperkirakan kondisi lapisan es abadi di Puncak Jaya akan segera menghilang, hal ini diduga sebagai dampak yang ditimbulkan dari perubahan iklim. Gletser merupakan salah satu indikator penting yang dapat digunakan untuk mengidentifikasi kondisi iklim saat ini dan juga merupakan data proksi yang menyimpan rekaman iklim masa lalu (paleoklimat). Senyawa kimia serta substansi organik dan anorganik yang terkandung dalam gletser dapat memberikan informasi mengenai kondisi iklim dan lingkungan saat substansi tersebut tersimpan.

Untuk memprediksi perubahan iklim pada masa yang akan datang, data historis es Puncak Jaya dapat dijadikan acuan data di mana pada waktu yang bercerita tentang laju perubahan iklim tersebut. Hal ini akan lebih memperkuat data yang menunjukkan saat dimulainya trend kenaikan suhu bumi yang ditengarai akibat ulah manusia (antropogenik) sejak mulainya revolusi industri dan pemanfaatan bahan bakar fosil. Data
historis mengenai perubahan iklim di masa lalu, juga dapat memperbaiki proyeksi perubahan iklim pada masa yang akan datang yang umumnya menggunakan model dengan asumsi-asumsi perilaku manusia yang menyebabkan meningkatnya konsentrasi gas rumah kaca di atmosfer.

6.1.1 Definisi Paleoklimatologi

Paleoklimatologi adalah salah satu cabang klimatologi yang mempelajari perilaku iklim sebelum adanya periode pengukuran (observasi) unsur-unsur iklim dengan peralatan instrumentasi. Catatan berdasarkan pengukuran instrumentasi hanya memiliki rentang waktu yang sangat singkat (<10^7) dari sejarah iklim bumi sehingga kurang memadai untuk menjelaskan perspektif variasi iklim dan evolusi iklim sampai saat ini. Perspektif variabilitas iklim yang lebih panjang dapat diperoleh dengan mempelajari fenomena-fenomena alam yang bergantung pada iklim termasuk yang mencangkup ukuran dari struktur kebergantungan fenomena alam itu sendiri. Fenomena tersebut menyediakan suatu catatan proksi (proxy record) iklim dan studi dari catatan proksi data tersebut merupakan dasar dari paleoklimatologi. Dengan adanya catatan yang lebih detil dan lebih bisa dipercaya (reliable) dari fluktuasi iklim masa lampau maka kemungkinan untuk identifikasi penyebab dan mekanisme variasi iklim dapat ditingkatkan. Selanjutnya, data paleoklimat tersebut merupakan landasan untuk menguji hipotesa-hipotesa tentang perubahan iklim. Hanya dengan memahami tentang

Nilai dari data proksi ke rekonstruksi paleoklimatik sangat bergantung pada interval sampling minimum dan resolusi penanggalan
(dating), terutama penentuan ukuran detail suatu catatan. Saat ini, resolusi tahunan bahkan musiman dari fluktuasi iklim dalam skala waktu $10^1 - 10^3$ tahun dapat diperoleh dengan data proksi dari es (ice-core), koral, varved sediment dan studi tentang lingkar pohon (tree-ring). Tidak semua catatan paleoklimat peka terhadap indikator dari perubahan iklim yang mendadak. Fenomena yang bergantung pada iklim mungkin saja terjadi beberapa saat setelah gangguan iklim berlangsung sehingga perubahan yang mendadak tersebut terlihat seperti transisi yang gradual pada catatan paleoklimat. Sistem proksi yang berbeda memiliki tingkat inersia yang berbeda pula terhadap perubahan iklim, sehingga beberapa sistem pada dasarnya akan membuat fase yang berbeda terhadap variasi iklim, padahal sistem yang lainnya memiliki keterlambatan (lag) pada selang waktu beberapa abad lainnya (Bryson dan Wenland, 1967). Hal ini merupakan masalah yang pelik dalam proses akurasi penanggalan.

6.1.2 Analisis Paleoklimat

(berdasarkan data tingkat pertama lingkar pohon) sudah dikonversi ke sejumlah kecil eigenvectors yang menghitung sebagian besar varians data set tingkat kedua (Cook et al., 1992b). Eigenvector menunjukkan adanya sejumlah kecil modus atau pola kekerengan yang merupakan karakter data. Statistik yang diturunkan dari analisis ini merupakan data paleoklimat tingkat ketiga.

6.1.3 Inti Es (Ice Core)

Akumulasi hujan salju (snowfall) masa lampau pada tutupan es (ice caps) di daerah kutub dan lembaran es (ice sheets) di seluruh dunia menyediakan suatu catatan iklim dan kondisi lingkungan paleo yang sangat berguna. Kondisi ini dipelajari secara detail dengan analisis kimia dan fisis terhadap es dan firm (salju yang tidak menghilang pada musim panas) di dalam lapisan-lapisan inti dari permukaan es di wilayah yang mempunyai elevasi sangat tinggi. Di lokasi tersebut (snow zone; Benson, 1961), salju yang mencair dan yang bersublimasi sangat sedikit sekali sehingga akumulasi berjalan secara kontinyu, di beberapa lokasi kondisi ini berlangsung selama kurun waktu ratusan ribu tahun (Dansgaard et al., 1973). Hujan salju menyediakan suatu catatan yang unik, tidak hanya jumlah presipitasi per satuan luas, tetapi juga suhu udara, komposisi atmosfer (termasuk komposisi gas dan partikulat yang terlarut dan yang tidak terlarut), erupsi vulkanik dan bahkan variasi aktivitas matahari di masa lampau (Tabel 6.1).

Terdapat empat pendekatan yang dilakukan untuk memperoleh informasi paleoklimat dari inti es, yaitu analisis:
a. Isotop stabil dari O₂ di air dan atmosfer.
b. Gas lainnya yang terkandung di dalam gelembung udara (air bubbles) di dalam es.
c. Material yang utuh maupun yang terlarut di dalam firm maupun es.
Setiap analisis di atas juga menghasilkan nilai rata-rata usia es di suatu kedalaman dalam inti es.

Indikator yang paling penting untuk melakukan analisis terhadap data proksi paleoklimat adalah rasio isotop oksigen \(^{18}\text{O}/^{16}\text{O}\) dan isotop karbon \(^{13}\text{C}/^{12}\text{C}\) dari material berkapur di dalam inti sedimen bersamaan dengan rasio deuterium di dalam air laut dan lembaran es. Rasio ini biasanya dinyatakan sebagai \(\delta\) (departures), dari nilai standar laboratorium (ppt, parts per thousand) dengan rumus:

\[
\delta (X) = \left[\frac{R (X)_{\text{sample}}}{R (X)_{\text{standar}}} - 1 \right] \times 10^3
\]

(22)

Dimana \(R(X)\) adalah rasio massa isotop \(X\) terhadap massa keseluruhannya; \(R (X)_{\text{standar}}\) adalah kontanta untuk \(\text{CaCO}_3\) dari oksigen (PDB) atau untuk standar mean ocean water (SMOW). Selanjutnya \(R^{(18)}\text{O}\) \(\equiv^{18}\text{O}/^{16}\text{O}\), \(R(\text{D})\equiv\text{D}/\text{H}\) dan \(R^{(13)}\text{C}\) \(\equiv^{13}\text{C}/^{12}\text{C}\)

Tabel 6.1. Beberapa informasi paleoklimat penting yang diperoleh dari inti es. (Bradley, 1999)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleotemperatur</td>
<td>(\delta\text{D}, \delta^{18}\text{O})</td>
</tr>
<tr>
<td>Kelembaban</td>
<td>Deuterium excess (d)</td>
</tr>
<tr>
<td>Paleo-akumulasi (net)</td>
<td>Sinyal-sinyal musiman, (^{10}\text{Be})</td>
</tr>
<tr>
<td>Aktivitas vulkanik</td>
<td>Konduktivitas, nss, (\text{SO}_4)</td>
</tr>
<tr>
<td>Turbiditas troposferik</td>
<td>ECM, konten partikel mikro, trace elements</td>
</tr>
<tr>
<td>Kecepatan angin</td>
<td>Ukuran partikel, konsentrasi</td>
</tr>
<tr>
<td>Komposisi atmosfer</td>
<td>(\text{CO}_2, \text{CH}_4, \text{konten N}_2\text{O}, \text{glaciochemistry})</td>
</tr>
<tr>
<td>Sirkulasi atmosfer</td>
<td>(\text{Glaciochemistry (major ions)})</td>
</tr>
<tr>
<td>Aktivitas matahari</td>
<td>(^{10}\text{Be})</td>
</tr>
</tbody>
</table>
6.1.4 Pengamatan Curah Hujan

Untuk dapat menganalisis isotop yang terkandung dalam sampel es dan melihat kaitannya dengan kondisi iklim di masa lampau, perlu diteliti terlebih dahulu karakteristik isotop (khususnya isotop δ^{18}O dan δ^D) yang terkandung dalam air hujan yang jatuh disekitar daerah pengamatan. Pengamatan dilakukan dengan cara memasang alat untuk mengumpulkan air hujan, di sekitar lokasi pengambilan sampel es. Untuk dapat melihat karakteristik wilayah pengamatan secara keseluruhan, pengamatan dilakukan pada berbagai ketinggian yang berbeda. Dimulai dari wilayah lowland di sekitar pantai sampai pada wilayah highland di sekitar pengambilan sampel es (Gambar 6.1).

Secara alami kelimpahan isotop 16O, 17O, dan 18O di alam berturut-turut adalah 99,763%, 0,0375% dan 0,1995%. Kelimpahan 16O yang cukup tinggi di alam disebabkan oleh proses evolusi bintang yang menghasilkan 16O sebagai produk utamanya. Sedangkan dua isotop lain merupakan produk sekunder dari proses evolusi bintang.

Gambar 6.1 Lokasi Pengambilan sample air hujan
Ada beberapa hal penting tentang kandungan isotop di dalam air hujan yaitu: isotop yang lebih ringan akan lebih mudah menguap sehingga secara teori isotop-isotop tersebut akan jatuh pada ketinggian yang lebih tinggi dibandingkan isotop yang lebih berat, isotop yang lebih berat akan terpisah dari awan sesaat setelah hujan turun sehingga awan akan lebih ringan, uap yang masih terkandung di dalam awan akan cepat kehilangan 2H (D) and 18O dan akan bergerak menuju kutub atau ke dataran tinggi. Menurut Wandowo (1993), dalam siklus hidrologi (penguapan dan pengembunan) akan terjadi fraksinasi isotop yang disebabkan oleh perbedaan massa dari atom hidrogen dan deuterium ataupun massa dari atom 16O dan 18O yang merupakan atom penyusun molekul air. Variasi konsentrasi isotop stabil deuterium dan 18O dalam molekul air hujan inilah yang digunakan sebagai indikator tentang kejadian-kejadian yang dialami oleh suatu sistem hidrologi.

Konsentrasi isotop stabil dalam suatu lingkungan dinyatakan dalam per-mil (0/00) relatif terhadap suatu standar, dan biasanya dirumuskan dalam (IAEA, 2007):

$$
\delta^{18}O = \left(\frac{R_{spl} - R_{std}}{R_{std}} \right) \times 10^3 \%_0
$$

Dimana, $R_{spl} = ^{18}O/^{16}O$ ratio of sample dan $R_{std} = ^{18}O/^{16}O$ ratio of standard (VSMOW)

Sudah disebutkan sebelumnya, analisis isotop 2H (D) and 18O pada air hujan bertujuan untuk mendukung analisis sampel es yang diteliti. Dengan analisis isotop tersebut inti es dari puncak Jayawijaya dapat diketahui sumber isotop pembentuknya. Perbedaan konsentrasi keduanya disebabkan oleh proses kondensasi dan fraksinasi isotop. Demikian pula konsentrasi isotop air laut mempunyai nilai tertinggi yaitu sekitar 0 % o bila dibandingkan dengan konsentrasi jenis air yang lainnya, hal tersebut disebabkan oleh proses penguapan. Dengan adanya perbedaan isotop 2H (D) and 18O yang signifikan di antara jenis air tersebut maka kedua isotop
tersebut dapat digunakan untuk menentukan asal-usul air pembentuk es. Hasil analisis isotop 18O dan 2H (D) pada air hujan yang di ambil di beberapa tempat menunjukkan bahwa, kelimpahan kedua isotop berkurang seiring dengan bertambahnya ketinggian (Gambar 6.3). Walaupun demikian dari data diperoleh bahwa kelimpahan isotop pada suatu ketinggian relatif lebih stabil. Dari gambar tersebut diperlihatkan juga bahwa kelimpahan isotop 18O lebih banyak di bandingkan 2H (D) hal tersebut terkait dengan kelimpahan alami dari kedua isotop tersebut.

Gambar 6.2. Grafik isotop Oksigen dan Deterium berdasarkan waktu pengamatan
Bila dilihat secara rata-rata penurunan kelimpahan kedua isotop tersebut sangat tajam terjadi antara ketinggian 9 sampai 3615 m dpl. Selanjutnya pada ketinggian diatas 3615 m dpl jumlah isotop baik 18O dan 2H (D) sedikit mengalami peningkatan sampai ketinggian 4800 m dpl (Gambar 6.3). Hal ini sepetinya perlu diteliti lebih lanjut karena dari berbagai acuan, penurunan kadar isotop konsisten terhadap pertambahan jumlah ketinggian. Menurut Plumacher dan Kinzelbach (2000) yang melakukan penelitian kadar isotop pada salju di berbagai ketinggian, laju penurunan kadar isotop oksigen 18O sebesar -0,30 %.
6.1.5 Pemantauan dan Pengambilan Sampel Es di Puncak Jaya, Papua

Gambar 6.4. Beberapa aktivitas proses pengambilan sampel es di Puncak Jaya Papua. Dari kiri atas searah jarum jam adalah; pesawat helikopter untuk mengangkat peralatan pengambilan sampel es, proses pengeboran es, genset untuk sumber energi selama berada di lokasi gletser, dan tempat penyimpanan sampel es di Tembaga Pura sebelum diteruskan ke laboratorium di BPR, Ohio State University, Columbus Amerika Serikat.

Mengingat ketinggian tempat terkait dengan keberadaan lapisan es di pegunungan dan daerah kutub, maka dikhawatirkan dengan naiknya suhu global tersebut keberadaan lapisan es akan terus berkurang dan akan mengakibatkan kenaikan permukaan laut dengan konsekuensi merendam pulau-pulau kecil dan mengancam keberadaan penghuninya. Penerapan lebih lanjut dari hasil penelitian inti es ini adalah untuk merekonstruksi sejarah variabilitas iklim dan kecenderungan perubahannya di masa lalu. Sebagaimana diketahui bahwa pencatatan unsur iklim hanya tersedia sejak dimulainya pengamatan unsur-unsur

Gambar 6.5. Perkembangan lapisan es di Puncak Jaya dari tahun 1936 (a) tahun 1991 (b) sampai tahun 2001 (c)

Gambar 6.7. Distribusi suhu pada (a) 500 hPa dan (b) suhu permukaan laut yang menggambarkan pemanasan di daerah tropik khusunya di kolam hangat Pasifik Barat. Curah hujan yang tinggi (c) mencerminkan panasnya suhu permukaan dan lapisan atas atmosfer. Tanda bintang adalah dua lokasi puncak gunung es yang datanya dapat digunakan untuk merekonstruksi suhu di atmosfer dimasa yang lalu.

Perubahan Iklim dan Paleoklimat

es ini sangat terkait dengan pemanasan suhu global (Global Warming). Contoh pengambilan sampel es (Gambar 6.9) dan contoh penelitian di Papua (Gambar 6.10).

6.2 Dampak Perubahan Iklim Terhadap Variabilitas Iklim

IPCC tahun 2007 mendefinisikan variabilitas iklim sebagai keadaan rata-rata iklim dalam skala waktu dan spasial yang melebihi masing-masing kejadian-kejadian cuaca itu sendiri. Variabilitas tidak hanya mengandung makna rata-rata, tapi juga statistik lainnya seperti standar
deviasi, kejadian ekstrem, dan lain-lain. Istilah ini sering digunakan untuk menunjukkan deviasi/penyimpangan pada suatu rentang waktu (bulan, musim, atau tahun). Deviasi atau penyimpangan ini biasanya diistilahkan sebagai anomali. Penyebab variabilitas bisa berasal dari proses internal alamiah yang terjadi dalam sistem iklim (disebut variabilitas internal) dan bisa pula berasal dari variasi *forcing* eksternal alamiah ataupun anthropogenik (disebut variabilitas eksternal).

Variabilitas iklim meliputi fenomena-fenomena berikut:
1. Variasi yang secara langsung disebabkan murni oleh *forcing* eksternal periodik, seperti siklus insolasi diurnal atau musiman. Variasi diurnal disebabkan oleh rotasi bumi pada sumbunya sedangkan variasi musiman disebabkan oleh revolusi bumi mengelilingi matahari. Akibatnya terjadi variasi temperatur dan presipitasi antara siang dan malam dan antara musim. Untuk skala waktu yang lebih lama, variasi
quasi-periodik pada orbit Bumi mengelilingi matahari menyebabkan variasi intensitas radiasi matahari yang mencapai permukaan bumi.

3. Variasi yang dikaitkan dengan fluktuasi acak pada faktor-faktor fisis dan kimia. Variasi ini yang paling susah untuk diprediksi secara detil dalam skala waktu manapun. Faktor-faktor tersebut bisa berasal dari luar sistem iklim, seperti peningkatan aerosol akibat letusan gunung berapi, atau dari dalam sistem iklim itu sendiri, misalnya fluktuasi cuaca.

Gambar 6.11. Spektrum komposit variabilitas iklim untuk 10 juta tahun (sumber: Plaut et al., 1995, dalam Ghil, 2002)

Gambar 6.11 menggambarkan macam-macam variabilitas yang disebutkan di atas. Garis-garis runcing menunjukkan variasi periodik satu hari dan satu tahun. Puncak-puncak yang yang lebih lebar menunjukkan variabilitas dari faktor internal sedangkan bagian kontinum merefleksikan variasi stokastik dan chaos deterministik (variasi irregular). Antara dua garis
runcing satu hari dan satu tahun terdapat variabilitas sinoptik 3-7 harian dan variabilitas intraseasonal, yakni variabilitas yang terjadi dalam skala waktu 1-3 bulan.

6.2.1 Pemodelan Proyeksi Perubahan Iklim Indonesia

Iklim didefinisikan sebagai keragaman keadaan fisik atmosfer dan perubahan iklim didefinisikan sebagai perubahan pada iklim yang dipengaruhi langsung atau tidak langsung oleh aktivitas manusia yang merubah komposisi atmosfer, yang akan memperbesar keragaman iklim teramati pada periode yang cukup panjang (Tremberth, Houghton and Filho, 1995). Secara Statistik Perubahan iklim adalah perubahan unsur-unsurnya yang mempunyai kecederingan naik atau turun secara nyata yang menyertai keragaman harian, musiman maupun siklus.

Kajian perubahan iklim dan dampaknya secara umum dapat dilakukan dengan dua pendekatan yakni (1) bottom-up, dan (2) top-down (IPCC-TGICA, 2007), seperti ditunjukkan oleh bagan di dalam Gambar 6.12. Pendekatan bottom-up dilakukan berdasarkan analisis terhadap data observasi (historis) dan baseline data lingkungan maupun sosio-ekonomi, sedangkan pendekatan top-down didasarkan kepada hasil-hasil simulasi GCM yang terkait dengan skenario perubahan kondisi lingkungan serta sosio-ekonomi global.

Dalam beberapa kajian, kedua pendekatan tersebut dicoba diterapkan dalam analisis dan proyeksi perubahan iklim. Analisis data observasi diperlukan untuk mengidentifikasi pola perubahan iklim saat ini, sedangkan analisis data keluaran GCM dilakukan untuk mendapatkan proyeksi perubahan iklim ke depan. Permasalahan yang sering dihadapi dalam analisis perubahan iklim (secara bottom-up) adalah tidak tersedianya data dengan kualitas dan kontinuitas yang memadai, baik menyangkut data historis iklim maupun data kondisi lingkungan. Dalam hal analisis top-down, masalah yang sudah diketahui secara umum adalah tidak cukupnya resolusi spasial data GCM untuk, antara lain, mewakili faktor topografi yang berpengaruh terhadap variasi iklim regional dan lokal. Data keluaran GCM dapat digunakan setelah melalui proses pengolahan yang disebut downscaling, yakni teknik untuk mengolah data keluaran model global sehingga didapatkan data simulasi iklim dengan resolusi yang lebih tinggi atau lebih mewakili kondisi lokal.

Metode yang dapat digunakan untuk melakukan downscaling secara umum dapat digolongkan ke dalam (1) statistical downscaling dan (2) dynamical downscaling yang mencerminkan tool pemodelan yang digunakan. Dynamical downscaling didasarkan kepada penggunaan model matematis yang konsisten dengan gambaran fisis sistem iklim. Kekurangan metode ini adalah karena biasanya menghasilkan nilai estimasi dengan bias yang besar terhadap data pengamatan dan keperluan sumberdaya komputasi yang tinggi. Sebaliknya, metode

Gambar 6.13. Identifikasi perubahan iklim secara statistik dari (a)perubahan nilai rerata (mean), (b)perubahan variansi, dan (c)perubahan nilai rerata dan variansi. Sumbu vertikal menyatakan peluang dan sumbu horizontal menyatakan nilai parameter (iklim). (Diadaptasi dari Meehl, 2000).

Sehubungan dengan meningkatnya konsentrasi GRK akan menaikan temperatur global. Ada ketidak yakin dalam mengestimasi bagaimana iklim akan berubah pada skala regional (IPCC, 1996a). Karena belum tersedia metode yang cukup baik untuk memprediksi perubahan...
iklim pada skala ini, pendekatan alternatif untuk mengspesifikasikan iklim yang akan datang adalah dengan cara skenario iklim. Skenario iklim adalah representasi logis yang akan datang yang konsisten terhadap asumsi emisi GRK yang akan datang dan polutan lain, berdasarkan pemahaman efek peningkatan konsentrasi GRK pada iklim global. Skenario iklim adalah suatu kondisi iklim yang akan datang yang logis, dibangun secara tegas digunakan dalam penelitian konsekuensi potensi perubahan iklim antropogenik (IPCC, 2001). Range skenario dapat digunakan untuk mengidentifikasi sensitifitas suatu unit penunjuakan perubahan iklim dan untuk menolong pengambil kebijakan memutuskan suatu respon. Range skenario ini penting untuk menunjukkan bahwa skenario iklim bukanlah prediksi. Skenario iklim menghasilkan indikasi logis dari apa yang akan terjadi pada satu dekade atau satu abad berdasarkan sekumpulan asumsi yang spesifik. Skenario dapat dinyatakan sebagai alternatif kejadian yang akan datang. Kesesuaian dalam hal perubahan iklim adalah dalam penyediaan informasi bagaimana aktivitas manusia diperkirakan mengubah komposisi atmosfer, bagaimana dapat memengaruhi iklim global, dan bagaimana perubahan pada iklim bisa memengaruhi sistem alam dan aktivitas manusia. Skenario dari Peter Whetton (1993) menggunakan GCM, untuk wilayah Indonesia menunjukkan ada peningkatan suhu sekitar 0,1°C – 0,5°C pada tahun 2010 dan tahun 2070 sekitar 0,4°C – 3,0°C, sedangkan secara global terjadi peningkatan suhu antara 0,6°C – 1,7°C pada tahun 2030 dan 1,0°C – 4,0°C pada tahun 2070. R.L. Naylor dkk (2007) telah memproyeksikan sampai dengan tahun 2050 untuk bulan April, Mei dan Juni akan terjadi peningkatan curah hujan di Jawa dan Bali, sedangkan pada bulan Juli, Agustus dan September diproyeksikan kondisinya luar biasa kering. IPCC merekomendasikan melakukan proses skenario menggunakan model yang diantaranya yang dikembangkan oleh Hulme dkk (2000) yaitu menggunakan SCENGEN (SCENario GENerator,Gambar 6.14), juga merupakan tool untuk mendapatkan suatu range geografis skenario perubahan iklim dunia yang akan datang berdasarkan eksploitasi hasil eksperimen model iklim global ataupun sederhana yang dikombinasikan.
dengan data pengamatan iklim lokal dan global. SCENGEN (SCENario GENerator), juga merupakan tool untuk medapatkan suatu range geografis skenario perubahan iklim dunia yang akan datang berdasarkan eksploitasi hasil eksperimen model iklim global ataupun sederhana yang dikombinasikan dengan data pengamatan iklim lokal dan global. Skema Scengen dapat dilihat pada Gambar 6.14.

Gambar 6.14 Skema model SCENGEN

Variabilitas iklim merupakan standar deviasi iklim inter tahunan selama interval waktu lebih dari 20 tahun, sedangkan perubahan variabilitas iklim dinyatakan sebagai rasio standar deviasi iklim yang akan datang dibagi dengan standar deviasi iklim sekarang dikurangi 1 dan diekspresikan sebagai persentase. Nilai nol menunjukkan tidak ada perubahan iklim, sedangkan positif atau negatif menunjukkan adanya peningkatan atau penurunan variabilitas iklim. Pengamatan terhadap variabilitas iklim di Indonesia sudah dilakukan sejak jaman kolonial
belanda. Dalam sebuah laporannya mengenai iklim di Hindia Timur, Braak (1929) menuliskan:

“..., in successive years differences occur in the force of the monsoons which are closely connected with the general air-circulation. Consequently the differences between the seasons may vary appreciably, so that in some years the farmer will wait in vain for the dry season, whereas in other years he will look out for months and months for the first good shower.”

Jadi sejak lama telah diketahui bahwa variabilitas iklim dapat menyebabkan perubahan perilaku pola monsunal dimana musim kering hampir tidak ada pada satu tahun tetapi pada tahun lain kemarau berlangsung sangat lama. Mahmud (2010), menggunakan model SCENGEN (Gambar 6.15) untuk membuat proyeksi perubahan variabilitas sampai dengan tahun 2050. Hasil skenario menunjukkan untuk seluruh wilayah Indonesia ada peningkatan yang bervariatif, seperti di Sumatra mempunyai perubahan variabilitas 0,01 – 7,86 %, di Pulau Jawa, Bali dan NTB mempunyai perubahan variabilitas 0,01 - 5,20 %, di Kalimantan mempunyai perubahan variabilitas 2,34 – 5,20 %, di Maluku mempunyai perubahan variabilitas 5,20 – 7,85 %, dan di Papua mempunyai nilai variabilitas perubahan 5,20 - 8,63 %. Peningkatan perubahan terbesar terjadi di wilayah Indonesia bagian Timur (Papua), yaitu mempunyai nilai variabilitas perubahan 5,20 - 8,63 %, probabilitas peningkatan 0,68 -1,0 dengan nilai peningkatan sebesar 9,53 – 13,89. Sedangkan Peningkatan perubahan terkecil terjadi di wilayah Indonesia bagian Selatan (Pulau Jawa, Bali dan NTB), yaitu mempunyai nilai perubahan variabilitasnya adalah 0,01 – 5,20 %, probabilitas peningkatan 0,00 - 0,32 dengan nilai peningkatan sebesar 3,35 - 7,77.

Daerah yang berlokasi di sekitar khatulistiwa berpeluang mempunyai perubahan variabilitas yang tinggi. Proyeksi emisi CO₂ pada tahun 2050 sebesar 0,3 GT C karena kebijakan deforesasi, sedangkan dengan kebijakan bahan bakar fosil menjadi 15 GT C dengan konsentrasi
CO₂ nya sebesar 512 ppmv. Emisi CH₄ sebesar 770 Tg CH₄ dengan konsentrasinya sebesar 2300 ppbv. Pada kondisi temperatur menjadi 1,45 °C dan tinggi muka air laut ada kenaikan sebesar 16 cm (Mahmud, 2010).

Gambar 6.15. Peta proyeksi perubahan variabilitas hujan Indonesia tahun 2050 (Mahmud, 2010)

6.2.2 Model Deskripsi CSIRO MK.3.0

CCAM adalah model hidrostatis dan mencakup parameter fisik yang cukup lengkap. Parameter radiasi gelombang panjang (long-wave) dan gelombang pendek (short-wave) menggunakan parameterisasi dari Geophysical Fluid Dynamics Laboratory / GFDL (Schwarzkopf and Fels, 1991; Lacis and Hensen, 1973). Distribusi awan interaktif menggunakan skema liquid and ice-water oleh Rotstayn (Rotstayn, 1997). Model ini juga

Skenario proyeksi perubahan iklim CCAM menggunakan data masukan (input) berupa model GCM Mk 3.0 milik CSIRO, Australia. Data input lainnya yang diperlukan adalah data topografi dan penggunaan lahan (land-use). Data topografi sudah terintegrasi di dalam program inti CCAM. CCAM memiliki data topografi dalam 3 skala, yaitu:

1. skala 10 km seluruh dunia (topo2)
2. skala 1 km seluruh dunia (*.DEM)
3. skala 250 m untuk Australia (*.ter)

Tabel 6.2. Skema fisik model yang digunakan

<table>
<thead>
<tr>
<th>Skema mikrofisika awan</th>
<th>Smith (1990)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameterisasi momentum</td>
<td>Teori similaritas Monin-Obukhov</td>
</tr>
<tr>
<td>Soil</td>
<td>(Hillel 1982)</td>
</tr>
<tr>
<td>Snow models</td>
<td>Loth et al. (1993) and Yang et al. (1997)</td>
</tr>
<tr>
<td>Turbulent vertical mixing</td>
<td>Blackadar (1962)</td>
</tr>
<tr>
<td>Shortwave liquid-water clouds</td>
<td>Slingo (1989)</td>
</tr>
<tr>
<td>Sistem koordinat vertikal</td>
<td>Rautenbach (1999),</td>
</tr>
<tr>
<td>Presipitasi konvektif</td>
<td>(Gregory and Rowntree 1990)</td>
</tr>
<tr>
<td>Model termodinamika</td>
<td>Semtner (1976)</td>
</tr>
<tr>
<td>Parameterisasi CH</td>
<td>Rotstyn (1997)</td>
</tr>
<tr>
<td>Longwave</td>
<td>Schwarzkopf and Fels (1985, 1991)</td>
</tr>
<tr>
<td>Shortwave</td>
<td>Lacis and Hansen (1974)</td>
</tr>
<tr>
<td>Skema konveksi kumulus</td>
<td>Geleyn (1987)</td>
</tr>
</tbody>
</table>

Gambar 6.16. Diagram alir regional climate downscaling dengan CCAM

Selanjutnya, CCAM akan menentukan secara otomatis data topografi mana yang akan digunakan setelah pengguna memasukkan nilai lintang dan bujur wilayah kajian.
Sedangkan untuk data penggunaan lahan (*land-use*), CCAM memiliki 2 jenis *dataset*, yaitu:
1. dataset skala 1°全球经济 dengan 12 jenis kategori *land-use* (SiB)
2. dataset resolusi 6 km Australia dengan 33 jenis kategori *land-use* (Grateau's)
3. dataset skala 1° 'global soil' dengan 10 kategori Zobler

CCAM melakukan simulasi iklim dari bulan ke bulan. Setiap menyelesaikan simulasi 1 bulan, CCAM akan menghasilkan "*Restart File*" yang digunakan untuk menginisialisasi simulasi bulan selanjutnya (Gambar 6.17).
Gambar 6.17. Proses running model iklim CCAM

Skenario proyeksi perubahan iklim ini menghasilkan 3 output berbeda, yaitu file dalam bentuk netcdf (*.nc) dan memiliki proyeksi lintang bujur biasa, file dalam bentuk conformal-cubic grid, dan restart file. Model CCAM menggunakan conformal-cubic grid, yaitu suatu proyeksi kubus pada permukaan bola. Tiap permukaan kubus memiliki 48 x 48 titik grid dan 18 level ketinggian (sigma level). Jumlah total titik grid untuk seluruh permukaan bola adalah 48 x 48 x 6 x 18 atau setara dengan 248832 titik (Gambar 4.12).

Terlihat bahwa data model yang belum dikoreksi tidak dapat mendekati nilai observasi (underestimation), sedangkan model yang telah dikoreksi menunjukkan kesesuaian distribusi antara data model dan observasi. Metode koreksi bias dapat digunakan untuk mengoreksi hasil estimasi model guna memperoleh hasil prediksi yang lebih akurat. Metode ini memberikan faktor koreksi sebagai pengali data prediksi sedemikian sehingga distribusi nilai prediksi mendekati distribusi data observasi. Dengan demikian faktor koreksi tersebut dapat dimanfaatkan untuk mengoreksi prediksi model CSIRO Mk.3.0 near future dan future. Hasil koreksi ini masih memerlukan studi lebih lanjut yakni dengan mencari faktor koreksi untuk data tiap bulan yang dipisahkan. Sebab, secara fisis kondisi iklim setiap bulan khususnya di wilayah Indonesia berbeda dengan bulan-bulan lainnya. Oleh karena itu diperlukan pencarian faktor koreksi data model untuk tiap bulan.
6.2.3 Variabilitas Iklim

Pola yang hampir sama ditunjukkan hasil observasi tahun 1971-2000 dengan hasil model. Hal tersebut menandakan bahwa model mampu mensimulasikan curah hujan selama 30 tahun dengan baik khususnya
untuk daerah tersebut. Sedangkan jika dibandingkan dengan proyeksi probabilitas curah hujan sampai tahun 2099 maka terdapat perbedaan rataan dan variansi. Hal tersebut mengindikasinya terjadinya perubahan curah hujan di daerah tersebut yang menurut Meehl merupakan indikasi dari terjadinya perubahan iklim. Sehingga dapat dianalisis lebih lanjut bahwa dampak perubahan iklim terhadap variabilitas curah hujan berupa perubahan curah hujan yang secara statistik terlihat dalam rataan dan variansi dan secara nyata terlihat perubahan pola curah hujan (Gambar 6.22). Sebagai perbandingan dilakukan analisis statistik temperatur didaerah yang sama (Gambar 6.23), gambar tersebut mengindikasi terjadinya temperature shift yang dapat diartikan terjadinyanya perubahan temperatur dalam rata-rata dan variansinya.

Gambar 6.20. Variabilitas iklim Indonesia keluaran model CSIRO Mk.3.0 2050

Gambar 6.21. Variabilitas iklim Indonesia keluaran model CSIRO Mk.3.0 2099
Gambar 6.22. Probabilitas CH Pontianak observasi, model dan hasil proyeksi model

Gambar 6.23. Probabilitas temperatur Pontianak observasi, model dan hasil proyeksi model

Perubahan iklim diindikasikan dengan perubahan curah hujan, temperatur, tinggi muka air laut dan cuaca ekstrim. Dampak perubahan iklim terhadap variabilitas Iklim di Indonesia dapat dikaji menggunakan model perubahan iklim SCIRO Mk.3.0. Model ini menggunakan skenario...

6.3 Dampak Perubahan Dan Variabilitas Iklim Laut Di Indonesia

Indonesia berada pada posisi silang diantara dua benua (Asia dan Australia) dan dua Samudera (Pasifik dan Hindia). Indonesia adalah benua maritim terbesar di dunia, dengan nonlinearitas atmosfer yang tinggi yang disebabkan oleh adanya interaksi antara topografi, vegetasi, monsun, dan interaksi atmosfer dan laut. Indonesia merupakan negara kepulauan dengan luas laut mencapai 70% dari luas wilayahnya. Keadaan ini mengakibatkan iklim di wilayah Indonesia dikendalikan oleh iklim laut disekitarnya. Adanya isu perubahan dan variabilitas iklim yang mempunyai dampak signifikan pada kehidupan manusia akhir-akhir ini, menimbulkan pertanyaan apakah kejadian ini juga dipengaruhi oleh adanya perubahan iklim laut. Penelitian ini sangat penting dilakukan karena perubahan yang ada di laut akan berpengaruh juga pada daerah daratan, terutama daerah pesisir. Zona pesisir Indonesia menopang kehidupan sekitar 60% dari lebih dari 200 juta penduduk Indonesia. Oleh karena itu adanya pemahaman tentang perubahan dan variabilitas laut, akan meningkatkan pemahaman tentang perubahan iklim beserta dampak yang di timbulkan. Dalam kajian perubahan iklim laut yang menjadi kajian pokoknya adalah perubahan suhu permukaan laut. Dampak yang di bahas dalam kajian perubahan dan variabilitas iklim laut ini meliputi kenaikan paras muka laut dan variasi curah hujan. Lautan secara kasarnya menutupi 71% permukaan bumi dan
menjadi tempat tinggal bagi beberapa ekosistem yang sangat produktif. Arus dan temperatur permukaan laut memengaruhi pola cuaca dan membentuk suatu iklim. Penguapan (evaporasi) dari permukaan laut menyumbang sebagian besar curah hujan yang turun ke bumi. Kemampuan lautan untuk menyerap dan menyimpan energi memungkinkan lautan menjadi suatu penyangga (buffer) terhadap perubahan iklim yang ekstrim. Dan yang lebih penting, lautan mempunyai kapasitas yang luar biasa untuk memindahkan karbon dioksida (CO₂) dari atmosfer; para peneliti memperkirakan bahwa lautan telah menyerap 1/3 dari karbon antropogenik yang dilepaskan ke udara.

6.3.1. Klimatologi Iklim Laut

Iklim adalah rata-rata dan variasi temperatur, penguapan, presipitasi (curah hujan), angin dan keadaan udara atau atmosfer yang sangat dipengaruhi oleh posisi matahari terhadap bumi selama periode tertentu yang berkisar dalam jangka waktu yang panjang (Winarso, 2003), setidaknya untuk rentang waktu 30 tahun menurut definisi WMO (World Meteorological Organization). Iklim merupakan sifat dari cuaca itu sendiri.

a. Klimatologi Suhu Permukaan Laut Indonesia (Sea Surface Temperature – SST)

b. Klimatologi Tinggi Paras Laut (Sea Surface Height – SSH)

Dari pengolahan data tinggi paras laut menggunakan data SODA reanalisis, dapat di jelaskan seperti pada Gambar 6.25.

Karacteristik tahunan Tinggi Paras Laut (SSH) dipengaruhi oleh presipitasi (curah hujan) dan suhu permukaan laut (SST). SSH akan meningkat pada saat terjadi curah hujan tinggi dan SST yang relatif panas, dan akan menurun mencapai SSH terendah pada saat curah hujan dan SST mencapai titik terendah. Curah hujan berperan sebagai fresh water flux (penambahan masa air) pada waktu musim penghujan, sedangkan SST berperan untuk expansi termal, penambahan volume air laut akibat kenaikan suhu air.

6.3.2. Variabilitas Iklim Laut

Indonesia terdiri dari daratan dan lautan (kepulauan) yang terletak di antara Samudera Hindia dan Pasifik, yang merupakan jalur arus lintas Indonesia dari kedua lautan besar tersebut, maka daerah Indonesia dipengaruhi oleh fenomena global seperti ENSO (*El Niño Southern Oscillation*), baik *El Niño* maupun *La Niña* yang menjadi penting sebagai regulator interaksi atmosfer-lautan di wilayah ini (Siswanto and Suratno, 2008).

a. Variabilitas Suhu Permukaan Laut

Gambar 6.27. Analisis regression map antara indeks Nino 3,4 dengan suhu permukaan laut dan arus permukaan dari data SODA reanalysis selama 45 tahun (SODA reanalysis 1960-2004)

b. Variabilitas Tinggi Paras Laut

Dalam analisa variabilitas suhu permukaan laut ini digunakan analisis komposit fenomena global yaitu ENSO, pengolahan data suhu permukaan laut dengan metode analisis komposit dapat ditunjukkan dalam Gambar 6.28.

6.3.3 Perubahan Iklim Laut

a. Tren Perubahan Suhu Permukaan Laut Indonesia

Pada musim hujan Desember-Januari-Februari (DJF), sebagian besar wilayah laut Indonesia mengalami tren peningkatan suhu permukaan laut. Tren peningkatan suhu yang paling tinggi berada di perairan sekitar Laut Sulawesi, Laut Halmahera dan Laut Pasifik bagian barat yang berbatasan dengan Pualau Papua. Luasan wilayah yang
memiliki tren peningkatan suhu permukaan laut paling luas terjadi saat bulan Desember, kemudian semakin menyempit pada bulan Januari dan Februari. Disamping adanya tren peningkatan suhu, pada musim ini juga terjadi tren penurunan suhu di Laut Cina Selatan yang terlihat pada bulan Januari dan meluruh pada bulan Februari, tetapi peluruhan tren penurunan suhu di Laut Cina Selatan ini diikuti oleh peningkatan tren penurunan suhu di perairan Teluk Cambridge. Begitu juga peningkatan suhu permukaan laut selama 28 tahun musim hujan ini paling tinggi terjadi pada bulan Desember dimana di daerah Kepala Burung, Papua mengalami peningkatan suhu sebesar 0,8 – 1°C.

Pada musim peralihan menuju kemarau bulan Maret-April-Mei (MAM) perairan Indonesia didominasi oleh no trend. Hanya sedikit daerah yang mengalami tren peningkatan maupun penurunan suhu permukaan laut, derah yang mengalami tren peningkatan suhu meliputi Selat Makassar, Kepala Burung, Teluk Siam, Teluk Benggala. Pada umumnya daerah-daerah tersebut masuk kedalam tren kelompok 2 dan 3. Pada bulan Mei terlihat adanya tren penurunan suhu di Teluk Benggala dan Perairan sekitar Filipina. Perubahan suhu pada musim ini juga sedikit hanya berkisar antara -0,4 – 0,6 °C dimana angka negatif menunjukkan penurunan suhu sedangkan nilai positif menunjukkan peningkatan suhu.

Pada musim kemarau bulan Juni-Juli-Agustus (JJA) ada penambahan luas area yang mengalami tren peningkatan suhu permukaan laut, terutama di Selat Malaka, perairan ujung utara Sumatera dan Samudera Pasifik bagian barat yang berbatasan dengan Pulau Papua. Tren peningkatan suhu terlihat paling luas pada puncak musim kemarau yaitu bulan Juli dan umumnya masuk kategori kelompok 4 dan berada di Samudera Pasifik sebelah utara Papua. Tren penurunan suhu juga masih terlihat di sekitar perairan Filipina pada bulan Mei-Juli dan Darwin pada bulan Juni yang berkembang sampai bulan Agustus dan menurun pada bulan September. Perubahan suhu yang terjadi di perairan Indonesia pada musim kemarau ini berkisar antara -0,2 – 0,6 °C.
Gambar 6.28. Analisis komposit variabilitas tinggi paras laut dalam cm (1960-2004) pada saat Lanina, El Nino dan Klimatologi

Pada musim peralihan menuju hujan bulan September-Oktober-November (SON), daerah yang mengalami tren peningkatan suhu yaitu sekitar Selat Malaka, Samudera Hindia Laut Jawa, Selat Makassar dan Samudera Pasifik sebelah utara Papua. Perubahan suhu selama 28 tahun pada musim peralihan ini berkisar antara 0,2 – 0,6 °C. Selat Malaka dan Samudera Pasifik di sebelah utara Papua mengalami tren peningkatan suhu sepanjang tahun, sedangkan daerah yang paling tinggi kenaikan
suhu permukaan lautnya adalah perairan sekitar Kepala Burung – Papua dan terjadi ketika musim hujan. Puncak tren peningkatan suhu permukaan laut terutama terjadi pada musim hujan dan musim kemarau, sedangkan pada musim peralihan tren perubahan suhu permukaan laut cenderung lebih lemah. Adanya variasi tren pada masing-masing daerah dimungkinkan karena adanya beberapa faktor yang meliputi arus laut, kedalaman laut serta pola sirkulasi massa air yang berbeda pada tiap-tiap daerah. Umumnya daerah yang mengalami tren lebih tinggi merupakan laut dangkal. Daerah yang mengalami tren perubahan suhu lebih banyak terdapat pada perairan antar pulau yang berada di sekitar ekuator dibandingkan yang berada di laut lepas. Jika dilihat secara tahunan, perairan dalam di selatan pulau Jawa sampai Laut Timor dan Laut Arafuru tidak mengalami perubahan tren, begitu juga di Laut Cina Selatan dan perairan sekitar Filipina. Perbedaan tingkat kenaikan SST antara perairan dalam dan perairan luar tersebut bisa disebabkan oleh perbedaan kedalaman, dan kondisi topografi. Perairan dalam yang relatif dangkal menyebabkan mixing layer terbentuk dengan sempurna, dengan fluktuasi antara SST tertinggi dan terendah tahunan tidak terlalu besar. Sementara itu kenaikan global SST berkisar antara 0,3°C sampai 0,4°C. Perairan timur Indonesia sangat sensitif terhadap perubahan variabilitas SST di Samudera Pasifik dan sangat dipengaruhi pergerakan warm-pool SST dan fenomena ENSO.

b. Perubahan Tinggi Paras Laut

Pemantauan dan pemahaman mengenai perubahan kedudukan muka laut global merupakan salah satu isu yang aktual saat ini dalam studi perubahan global dan lingkungan. Salah satu efek dari pemanasan global yaitu adanya kenaikan muka laut yang dipercepat oleh adanya aktivitas manusia yang meningkatkan kadar karbondioksida di udara. Pemanasan global dapat menyebabkan terjadinya perubahan kedudukan muka laut termasuk di Indonesia yang memiliki luas perairan sekitar 70% dari luas wilayahnya. Kenaikan muka laut dapat terjadi secara periodik maupun non-
periodik. Kenaikan muka laut periodik terjadi secara alami bila keadaan di bumi setimbang dan biasanya berlangsung dalam jangka waktu pendek, sedangkan kenaikan muka non-periodik dapat dikatakan sebagai perubahan sekular muka laut. Perubahan sekular merupakan perubahan level laut jangka panjang. Berdasarkan faktor penyebabnya, perubahan sekular dikategorikan menjadi 2 jenis, yaitu: perubahan eustatik atau perubahan volume air laut dan pergerakan kerak bumi. Analisis dan proyeksi naiknya muka laut yang ditampilkan sebagaimana dalam Gambar 6.29. Nampak bahwa wilayah timur Indonesia mengalami kenaikan tinggi paras laut sekitar 0,6 - 1 cm per tahunnya, lebih tinggi dari wilayah Indonesia bagian barat yang umumnya hanya berkisar 0,2 cm pertahunnya. Hasil proyeksi pada tahun 2100, nampak wilayah Indonesia umumnya akan mengalami kenaikan tinggi paras laut hingga 0,7 cm pertahunnya.

Gambar 6.29. Spatial trend analysis tinggi muka laut berdasarkan proyeksi tahun 2100 berdasarkan skenario IPCC SRES A1B

c. Perubahan Variabilitas Iklim (ENSO)
Secara historis, sebagaimana yang ditunjukkan Gambar 6.30 berdasarkan analysis time-series kejadian El Niño dan La Niña

![Gambar 6.30. Time series index SST untuk daerah Niño3.4 (Niño 3.4 index) dari data SODA 1957 – 2004.](image)

Gambar 6.31. Proyeksi perubahan variabilitas ENSO menggunakan scenario IPCC A1B (a) time series Nino3 index hasil proyeksi, (b) wavelet spectrum dan (c) global wavelet dari (a) serta (d) cuplikan skala 2-8 tahun sebagai representasi frekuensi ENSO.

Secara klimatologi, unsur-unsur iklim laut yang berupa SST, arus permukaan, tinggi paras laut dan gelombang di pengaruhi oleh adanya gerak semu matahari dan sirkulasi monsun. Pengaruh tersebut lebih

Variabilitas iklim juga merupakan faktor yang berpengaruh terhadap dinamika laut di Indonesia, pada saat La Nina wilayah laut Indonesia pada umumnya mengalami peningkatan suhu, sedangkan pada saat El Nino mengalami penurunan suhu dibandingkan dengan rerata klimatologinya. Pola arus laut juga dipengaruhi oleh variabilitas iklim, dimana pada saat La Nina arus yang menguat adalah south equatorial current dan north equatorial current melemah, tetapi pada saat El Nino, north equatorial current menguat dan berubah arah berbalik menuju Samudera Pasifik. Tinggi paras laut juga dikendalikan oleh adanya variabilitas iklim dimana pada saat La Nina terjadi input massa air menuju laut Indonesia sehingga mengalami peningkatan paras laut dan begitu juga sebaliknya pada El Nino.

Tren peningkatan SST di Indonesia umumnya terjadi di perairan antar pulau yang berupa perairan dangkal. Tren ini dipengaruhi oleh kondisi perairan di sekitarnya, Selat Makassar yang menjadi pintu masuk massa air dari Samudera Pasifik mengalami tren peningkatan suhu karena di Samudera Pasifik memang mengalami tren peningkatan suhu yang tinggi. Begitu juga selat Malaka dan Selat Sunda yang menjadi pintu masuk massa
air dari Samudera Hindia juga mengalami tren peningkatan suhu. Adanya perbedaan tren pada masing-masing daerah disebabkan oleh adanya karakteristik perairan, pola arus, kedalaman dan sirkulasi massa air.

Iklim laut Indonesia diproyeksikan akan mengalami perubahan, tinggi muka laut pada tahun 2100 akan mengalami kenaikan 0,7 cm/tahun. Perubahan iklim laut juga akan berdampak pada fenomena siklus dan intensitas ENSO dimasa yang akan datang dimana frekuensi akan semakin sering terjadi dan intensitasnya juga semakin tinggi.
DAFTAR PUSTAKA

Bradley, R.S., (1999). PALEOCLIMATOLOGY. Reconstructing Climates of the Quaternary, 2nd Ed., University of Massachusetts Amherst, Massachusetts ELSEVIERACADEMIC PRESS

Hecht, A., Barry, R.G., Fritts, H.C., Imbrie, J., Kutzbach, J., Mitchell, Jr.,
Lockwood, Mike. Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proceedings of the Royal Society A. doi:10.1098/rspa.2007.1880. Diakses pada 21 Juli 2007. "Our results show that the observed rapid rise in global mean temperatures seen after 1985 cannot be ascribed to solar variability, whichever of the mechanisms is invoked and no matter how much the solar variation is amplified".
Rotstayn, L.D., 1997: A physically based scheme for the treatment of

Siswanto, 2008b. Simulating Regional Climate Changes over Maritime-Continent using Regional Climate Model. Graduate School of Climate Science, University of Bern. (poster).

Siswanto, 2010. Changes in Pacific Climate Variability in Response to Freshwater Discharge in the North Atlantic.. MSc Thesis, Graduate School of Climate Sciences, Universität Bern, Switzerland. July 2010

http://www.ipcc.ch/ipccreports/ar4-syr.htm

http://www.epa.gov/ghgreporting/ghgdata/index.html
RIWAYAT PENULIS
